Skip to main content
Log in

Quantifying the Uncertainty in Modeled Water Drainage and Nutrient Leaching Fluxes in Forest Ecosystems

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

In terrestrial ecosystem studies, water drainage and nutrient leaching in the soil profile are estimated with hydrological models. Comparing modeled results to empirical data or comparing data from different models is, however, difficult because the uncertainty of input–output budget predictions is often unknown. In this study, we developed a procedure combining a Generalized Likelihood Uncertainty Estimation and a Monte-Carlo modeling approach to estimate uncertainty in model parameter estimates and model outputs water drainage and nutrient leaching fluxes for the WatFor water balance model. This procedure was then applied to compare different model optimization strategies (daily soil moisture measurements, monthly measurements of chloride concentrations in soil solution, and the elution of a concentrated chloride) at the same experimental site in a 90-year-old European beech (Fagus sylvatica L.) forest in Brittany (France). We show that the monitoring data of natural variations of chloride concentrations in soil solution were the most efficient dataset to calibrate the WatFor model compared to the soil moisture and chloride tracing experimental data. We also show that water tracing experimental data are the most efficient data to estimate the preferential flow generation model parameters. The optimization strategy had little influence on the predicted water drainage flux and nutrient leaching flux at the root zone boundary on a yearly time scale but influenced water and nutrient fluxes in the topsoil layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Adriaenssens S, Staelens J, Baeten L, Verstraeten A, Boeckx P, Samson R, Verheyen K. 2013. Influence of canopy budget model approaches on atmospheric deposition estimates to forests. Biogeochemistry 116:215–29.

    Article  CAS  Google Scholar 

  • Akelsson C, Westling H, Sverdrup H, Gundersen P. 2007. Nutrient and carbon budgets in forest soils as decision support in sustainable forest management. Forest Ecology And Management 238:167–74.

    Article  Google Scholar 

  • Allaire SE, Roulier S, Cessna AJ. 2009. Quantifying preferential flow in soils: A review of different techniques. Journal of Hydrology 378:179–204.

    Article  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A, Cobb N. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology And Management 259:660–84.

    Article  Google Scholar 

  • Appling AP, Leon MC, McDowell WH. 2015. Reducing bias and quantifying uncertainty in watershed flux estimates: the R package loadflex. Ecosphere 6:1–25.

    Article  Google Scholar 

  • Aussenac G. 1968. Interception des précipitations par le couvert forestier. Ann. Sci. forest 25:135–56.

    Article  Google Scholar 

  • Baize D, Girard MC. 1998. A sound reference base for soils: the “Référentiel Pédologique”. Paris: INRA. p 324p.

    Google Scholar 

  • Bedison JE, Johnson AH. 2010. Seventy-Four Years of Calcium Loss from Forest Soils of the Adirondack Mountains, New York. Soil Science society of America Journal 74:2187–95.

    Article  CAS  Google Scholar 

  • Beven K. 1989. Changing ideas in hydrology — The case of physically-based models. Journal of Hydrology 105:157–72.

    Article  Google Scholar 

  • Beven K, Binley A. 1992. The future of distributed models: Model calibration and uncertainty prediction. Hydrological processes 6:279–98.

    Article  Google Scholar 

  • Beven K, Binley A. 2014. GLUE: 20 years on. Hydrological processes 28:5897–918.

    Article  Google Scholar 

  • Bormann FH, Likens GE. 1967. Nutrient cycling. Science 155:424–9.

    Article  CAS  PubMed  Google Scholar 

  • Boxman AW, Peters RCJH, Roelofs JGM. 2008. Long term changes in atmospheric N and S throughfall deposition and effects on soil solution chemistry in a Scots pine forest in the Netherlands. Environmental Pollution 156:1252–9.

    Article  CAS  PubMed  Google Scholar 

  • Bréda N, Huc R, Granier A, Dreyer E. 2006. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 63:625–44.

    Article  Google Scholar 

  • Campbell JL, Yanai RD, Green MB, Likens GE, See CR, Bailey AS, Buso DC, Yang DQ. 2016. Uncertainty in the net hydrologic flux of calcium in a paired-watershed harvesting study. Ecosphere 7:15.

    Article  Google Scholar 

  • Christiansen JR, Elberling B, Jansson PE. 2006. Modelling water balance and nitrate leaching in temperate Norway spruce and beech forests located on the same soil type with the CoupModel. Forest Ecology And Management 237:545–56.

    Article  Google Scholar 

  • Cooper DM. 2005. Evidence of sulphur and nitrogen deposition signals at the United Kingdom Acid Waters Monitoring Network sites. Environmental Pollution 137:41–54.

    Article  CAS  PubMed  Google Scholar 

  • Court M, van der Heijden G, Didier S, Nys C, Richter C, Pousse N, Saint-André L, Legout A. 2018. Long-term effects of forest liming on mineral soil, organic layer and foliage chemistry: Insights from multiple beech experimental sites in Northern France. Forest Ecology And Management 409:872–89.

    Article  Google Scholar 

  • Dambrine E, Vega JA, Taboada T, Rodriguez L, Fernandez C, Macias F, Gras JM. 2000. Budgets of mineral elements in small forested catchments in Galicia (NW Spain). Annals of forest science 57:23–38.

    Article  Google Scholar 

  • Deeks LK, Bengough AG, Stutter MI, Young IM, Zhang XX. 2008. Characterisation of flow paths and saturated conductivity in a soil block in relation to chloride breakthrough. Journal of Hydrology 348:431–41.

    Article  Google Scholar 

  • Gérard F, Tinsley M, Mayer KU. 2004. Preferential Flow Revealed by Hydrologic Modeling Based on Predicted Hydraulic Properties. Soil Science society of America Journal 68:1526–38.

    Article  Google Scholar 

  • Giesler R, LundstrÖM US, Grip H. 1996. Comparison of soil solution chemistry assessment using zero-tension lysimeters or centrifugation. European Journal of Soil Science 47:395–405.

    Article  CAS  Google Scholar 

  • Granier A, Bréda N, Biron P, Villette S. 1999. A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands. Ecological Modelling 116:269–83.

    Article  Google Scholar 

  • H. R, F. L, A. P, F. B, S. F, S. BR, A. G. 2006. Physiological Responses of Forest Trees to Heat and Drought. Plant Biology 8: 556–71

  • Hendershot WH, Courchesne F. 1991. Comparison of soil solution chemistry in zero tension and ceramic-cup tension lysimeters. Journal of Soil Science 42:577–83.

    Article  CAS  Google Scholar 

  • Hodson ME, Langan SJ. 1999. A long-term soil leaching column experiment investigating the effect of variable sulphate loads on soil solution and soil drainage chemistry. Environmental Pollution 104:11–19.

    Article  CAS  Google Scholar 

  • Hülsmann L, Bugmann HKM, Commarmot B, Meyer P, Zimmermann S, Brang P. 2016. Does one model fit all? Patterns of beech mortality in natural forests of three European regions. Ecological applications 26:2465–79.

    Article  Google Scholar 

  • Huntington TG, Hooper RP, Johnson CE, Aulenbach BT, Cappellato R, Blum AE. 2000. Calcium depletion in a southeastern United States forest ecosystem. Soil Science society of America Journal 64:1845–58.

    Article  CAS  Google Scholar 

  • IUSS Working Group WRB. 2007. World refernce base for soil resources 2006, First Update 2007. FAO, Rome No: World Soil Resources Reports. p 103.

    Google Scholar 

  • Jarvis NJ. 2007. A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. European Journal of Soil Science 58:523–46.

    Article  Google Scholar 

  • Johnson DW, Todd DE. 1998. Harvesting effects on long-term changes in nutrient pools of mixed oak forest. Soil Science Society of America Journal 62:1725–35.

    Article  CAS  Google Scholar 

  • Johnson DW, Todd DE Jr, Trettin CF, Mulholland PJ. 2008. Decadal Changes in Potassium, Calcium, and Magnesium in a Deciduous Forest Soil. Soil Science society of America Journal 72:1795–805.

    Article  CAS  Google Scholar 

  • Jonard M, Fürst A, Verstraeten A, Thimonier A, Timmermann V, Potočić N, Waldner P, Benham S, Hansen K, Merilä P, Ponette Q, de la Cruz AC, Roskams P, Nicolas M, Croisé L, Ingerslev M, Matteucci G, Decinti B, Bascietto M, Rautio P. 2015. Tree mineral nutrition is deteriorating in Europe. Global Change Biology 21:418–30.

    Article  PubMed  Google Scholar 

  • Jonard M, Legout A, Nicolas M, Dambrine E, Nys C, Ulrich E, van der Perre R, Ponette Q. 2012. Deterioration of Norway spruce vitality despite a sharp decline in acid deposition: a long-term integrated perspective. Global Change Biology 18:711–25.

    Article  Google Scholar 

  • Kavetski D, Kuczera G, Franks SW. 2006. Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory. Water resources research 42:9.

    Google Scholar 

  • Kirchen G, Calvaruso C, Granier A, Redon P-O, Van der Heijden G, Bréda N, Turpault M-P. 2017. Local soil type variability controls the water budget and stand productivity in a beech forest. Forest Ecology And Management 390:89–103.

    Article  Google Scholar 

  • Kuczera G, Parent E. 1998. Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm. Journal of Hydrology 211:69–85.

    Article  Google Scholar 

  • Lebourgeois F, Bréda N, Ulrich E, Granier A. 2005. Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French Permanent Plot Network (RENECOFOR). Trees 19:385–401.

    Article  Google Scholar 

  • Legout A, Legout C, Nys C, Dambrine E. 2009a. Preferential flow and slow convective chloride transport through the soil of a forested landscape (Fougères, France). Geoderma 151:179–90.

    Article  CAS  Google Scholar 

  • Legout A, Nys C, Picard JF, Turpault MP, Dambrine E. 2009b. Effects of storm Lothar (1999) on the chemical composition of soil solutions and on herbaceous cover, humus and soils (Fougeres, France). Forest Ecology And Management 257:800–11.

    Article  Google Scholar 

  • Legout A, van der Heijden G, Jaffrain J, Boudot J-P, Ranger J. 2016. Tree species effects on solution chemistry and major element fluxes: A case study in the Morvan (Breuil, France). Forest Ecology And Management 378:244–58.

    Article  Google Scholar 

  • Legout A, Walter C, Nys C. 2008. Spatial variability of nutrient stocks in the humus and soils of a forest massif (Fougeres, France). Annals of forest science 65:10.

    Article  CAS  Google Scholar 

  • Marques R, Ranger J, Gelhaye D, Pollier B, Ponette Q, Goedert O. 1996. Comparison of chemical composition of soil solutions collected by zero-tension plate lysimeters with those from ceramic-cup lysimeters in a forest soil. European Journal of Soil Science 47:407–17.

    Article  CAS  Google Scholar 

  • Montelius M, Thiry Y, Marang L, Ranger J, Cornelis J-T, Svensson T, Bastviken D. 2015. Experimental Evidence of Large Changes in Terrestrial Chlorine Cycling Following Altered Tree Species Composition. Environmental Science & Technology 49:4921–8.

    Article  CAS  Google Scholar 

  • Neitsch SL, Arnold JG, Kiniry JR, Williams JR. 2011. Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute.

  • Norton SA, Young HE. 1976. Forest biomass utilization and nutrient budgets. Oslo biomass studies. Papers presented during the meeting of S4.01 [Mensuration, Growth and Yield] in Oslo, Norway, June 22, 1976. XVIth International Congress of IUFRO.: 55–73.

  • Öberg G, Holm M, Sandén P, Svensson T, Parikka M. 2005. The Role of Organic-matter-bound Chlorine in the Chlorine Cycle: A Case Study of the Stubbetorp Catchment, Sweden. Biogeochemistry 75:241–69.

    Article  CAS  Google Scholar 

  • Ogee J, Brunet Y, Loustau D, Berbigier P, Delzon S. 2003. MuSICA, a CO2, water and energy multilayer, multileaf pine forest model: evaluation from hourly to yearly time scales and sensitivity analysis. Global Change Biology 9:697–717.

    Article  Google Scholar 

  • Pascale W, Harald B, Andreas R. 2007. Radial growth responses to drought of Pinus sylvestris and Quercus pubescens in an inner-Alpine dry valley. Journal of Vegetation Science 18:777–92.

    Article  Google Scholar 

  • Piovesan G, Biondi F, Di Filippo A, Alessandrini A, Maugeri M. 2008. Drought-driven growth reduction in old beech (Fagus sylvatica L.) forests of the central Apennines. Italy. Global Change Biology 14:1265–81.

    Article  Google Scholar 

  • Ranger J, Turpault M-P. 1999. Input-output nutrient budgets as a diagnostic tool for sustainable forest management. Forest Ecology And Management 122:139–54.

    Article  Google Scholar 

  • Rasztovits E, Berki I, Mátyás C, Czimber K, Pötzelsberger E, Móricz N. 2014. The incorporation of extreme drought events improves models for beech persistence at its distribution limit. Annals of forest science 71:201–10.

    Article  Google Scholar 

  • Reuss JO, Johnson DW. 1986. Acid deposition and the acidification of soils and waters. New York: Springer-Verlag 119p.

  • Rivera D, Rivas Y, Godoy A. 2015. Uncertainty in a monthly water balance model using the generalized likelihood uncertainty estimation methodology. Journal of Earth System Science 124:49–59.

    Article  Google Scholar 

  • Shen ZY, Chen L, Chen T. 2012. Analysis of parameter uncertainty in hydrological and sediment modeling using GLUE method: a case study of SWAT model applied to Three Gorges Reservoir Region, China. Hydrology and Earth System Sciences 16:121–32.

    Article  Google Scholar 

  • Simunek J, Jarvis NJ, van Genuchten MT, Gardenas A. 2003. Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone. Journal of Hydrology 272:14–35.

    Article  Google Scholar 

  • Svensson T, Lovett GM, Likens GE. 2012. Is chloride a conservative ion in forest ecosystems? Biogeochemistry 107:125–34.

    Article  CAS  Google Scholar 

  • Sverdrup H, Thelin G, Robles M, Stjernquist I, Sörensen J. 2006. Assesing nutrient sustainability of forest production for different tree species considering Ca, Mg, K, N and P at Björnstorp Estate, Sweden. Biogeochemistry 81:219–38.

    Article  CAS  Google Scholar 

  • Toutain F. 1965. Etude des sols et des eaux de la forêt de Fougères. Université de Rennes.

  • van der Heijden G, Belyazid S, Dambrine E, Ranger J, Legout A. 2017. NutsFor a process-oriented model to simulate nutrient and isotope tracer cycling in forest ecosystems. Environmental Modelling & Software 95:365–80.

    Article  Google Scholar 

  • van der Heijden G, Legout A, Nicolas M, Ulrich E, Johnson DW, Dambrine E. 2011. Long-term sustainability of forest ecosystems on sandstone in the Vosges Mountains (France) facing atmospheric deposition and silvicultural change. Forest Ecology And Management 261:730–40.

    Article  Google Scholar 

  • van der Heijden G, Legout A, Pollier B, Bréchet C, Ranger J, Dambrine E. 2013. Tracing and modeling preferential flow in a forest soil — Potential impact on nutrient leaching. Geoderma 195–196:12–22.

    Article  CAS  Google Scholar 

  • Van Vliet-Lanoë B, Pellerin J, Helluin M. 1995. Morphogenèse-pédogenèse: les héritages du dernier cycle glaciaire en forêt de Fougères (Ille et Vilaine, France). Geomorph. N. F. 39:489–510.

    Google Scholar 

  • Vuorenmaa J. 2004. Long-term changes of acidifying deposition in Finland (1973-2000). Environmental Pollution 128:351–62.

    Article  CAS  PubMed  Google Scholar 

  • Vuorenmaa J, Augustaitis A, Beudert B, Clarke N, de Wit HA, Dirnbock T, Frey J, Forsius M, Indriksone I, Kleemola S, Kobler J, Kram P, Lindroos AJ, Lundin L, Ruoho-Airola T, Ukonmaanaho L, Vana M. 2017. Long-term sulphate and inorganic nitrogen mass balance budgets in European ICP Integrated Monitoring catchments (1990-2012). Ecological Indicators 76:15–29.

    Article  CAS  Google Scholar 

  • Watmough SA, Koseva I, Landre A. 2013. A Comparison of Tension and Zero-Tension Lysimeter and PRS™ Probes for Measuring Soil Water Chemistry in Sandy Boreal Soils in the Athabasca Oil Sands Region, Canada. Water, Air, & Soil Pollution 224:1663.

    Article  CAS  Google Scholar 

  • Weihermuller L, Siemens J, Deurer M, Knoblauch S, Rupp H, Gottlein A, Putz I. 2007. In situ soil water extraction: A review. Journal of environmental quality 36:1735–48.

    Article  CAS  PubMed  Google Scholar 

  • Yan JL, Zhao WZ. 2016. Characteristics of preferential flow during simulated rainfall events in an arid region of China. Environmental Earth Sciences 75:12.

    Article  Google Scholar 

  • Yanai RD, Tokuchi N, Campbell JL, Green MB, Matsuzaki E, Laseter SN, Brown CL, Bailey AS, Lyons P, Levine CR, Buso DC, Likens GE, Knoepp JD, Fukushima K. 2015. Sources of uncertainty in estimating stream solute export from headwater catchments at three sites. Hydrological processes 29:1793–805.

    Article  Google Scholar 

  • Yang J, Reichert P, Abbaspour KC, Xia J, Yang H. 2008. Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. Journal of Hydrology 358:1–23.

    Article  Google Scholar 

  • Yu L, Belyazid S, Akselsson C, van der Heijden G, Zanchi G. 2016. Storm disturbances in a Swedish forest—A case study comparing monitoring and modelling. Ecological Modelling 320:102–13.

    Article  CAS  Google Scholar 

  • Zanchi G, Belyazid S, Akselsson C, Yu L. 2014. Modelling the effects of management intensification on multiple forest services: a Swedish case study. Ecological Modelling 284:48–59.

    Article  Google Scholar 

  • Zheng Y, Keller AA. 2007. Uncertainty assessment in watershed-scale water quality modeling and management: 1. Framework and application of generalized likelihood uncertainty estimation (GLUE) approach. Water resources research 43:13.

    Google Scholar 

Download references

Acknowledgements

We would like to thank all the technicians without whom this project would not have been possible, in particular C. Antoine, L. Gelhaye and S. Bienaimé from INRA Nancy. This work was financed by the EFPA department (INRA), the GIP ECOFOR and by the Office National des Forêts in the context of one of the Environmental Research sites on “Lowland beech” part of F-ore-T network. The UR-1138 INRA—Biogéochimie des Ecosystèmes Forestiers is supported by a grant overseen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (ANR-11-LABX-0002-01, Lab of Excellence ARBRE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory van der Heijden.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 161 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Heijden, G., Hinz, A., Didier, S. et al. Quantifying the Uncertainty in Modeled Water Drainage and Nutrient Leaching Fluxes in Forest Ecosystems. Ecosystems 22, 677–698 (2019). https://doi.org/10.1007/s10021-018-0295-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-018-0295-4

Keywords

Navigation