Skip to main content

Advertisement

Log in

Contribution of Flooded Soils to Sediment and Nutrient Fluxes in a Hydropower Reservoir (Sarrans, Central France)

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

When a water reservoir is created, the pre-existing soils and vegetation are flooded. Here, we took advantage of the complete emptying of the Sarrans Reservoir, which was flooded 80 years ago, to study the contribution of soil flooding to sediment and nutrient fluxes in relation to water management. On the slopes of the annual drawdown zone, soils were eroded; in contrast, soils in the permanently flooded area were covered by silty sediments. A mass budget suggested that approximately one-third of the silty sediment cover that had accumulated on the lower slopes and the bottom of the reservoir had originated from this erosion. Averaged over the first 25 years after impoundment, the flux of the soil carbon that was redistributed from the annual drawdown zone was about one-fourth of the flux of the suspended matter that entered the reservoir from the catchment. The flux of eroded phosphorus was approximately two-fifths of that entering Sarrans from the catchment. On the other hand, the fluxes of dissolved organic carbon and N–NO3 entering the reservoir were approximately one order of magnitude higher than those redistributed by soil erosion; however, most of these fluxes left the reservoir through discharge. The comparison between flooded and unflooded grassland soils indicated a major loss of carbon (approximately 50%) since the impoundment, which was most likely due to mineralisation. These additional carbon and phosphorus fluxes may contribute significantly to the trophic upsurge process, as well as to the peak in GHG emissions that followed the reservoir impoundment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Abril G, Guérin F, Richard S, Delmas R, Galy-Lacaux C, Gosse P, Tremblay A, Varfalvy L, Dos Santos MA, Matvienko B. 2005. Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). Global Biogeochem Cycles 19, GB4007. https://doi.org/10.1029/2005GB002457.

  • Agence de l’Eau Adour-Garonne. 2015. SIEAG—Portail des Données sur l’Eau du Bassin Adour-Garonne. http://adour-garonne.eaufrance.fr/. Last accessed 3/2015.

  • Aldebert C. 2013. Vidange de la retenue de Sarrans et travaux associés. Dossier d’exécution et notice environnementale avec incidence Natura 2000.

  • Barros N, Cole JJ, Tranvik LJ, Prairie YT, Bastviken D, Huszar VLM, del Giorgio P, Roland F. 2011. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat Geosci 4:593–6.

    Article  CAS  Google Scholar 

  • Berthon V, Marchetto A, Rimet F, Dormia E, Jenny J-P, Pignol C, Perga M-E. 2013. Trophic history of French sub-alpine lakes over the last ~ 150 years: phosphorus reconstruction and assessment of taphonomic biases. J Limnol 72:34.

    Article  Google Scholar 

  • Bordes J-L. 2010. Les barrages en France du XVIIIè à la fin du XXè siècle. Histoire, évolution technique et transmission du savoir. Pour Mém 9:70–120.

    Google Scholar 

  • Bussmann I. 2005. Methane Release through resuspension of littoral sediment. Biogeochemistry 74:283–302.

    Article  CAS  Google Scholar 

  • CORINE Land cover. 2006 http://www.statistiques.developpement-durable.gouv.fr/clc/fichiers/. Last accessed 2015.

  • Deemer BR, Harrison JA, Li S, Beaulieu JJ, DelSontro T, Barros N, Bezerra-Neto JF, Powers SM, dos Santos MA, Vonk JA. 2016. Greenhouse gas emissions from reservoir water surfaces: a new global synthesis. BioScience 66:949–64.

    Article  Google Scholar 

  • Demarty M, Bastien J, Tremblay A. 2011. Annual follow-up of gross diffusive carbon dioxide and methane emissions from a boreal reservoir and two nearby lakes in Québec, Canada. Biogeosciences 8:41–53.

    Article  CAS  Google Scholar 

  • Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM, Middelburg JJ. 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51:2388–97.

    Article  Google Scholar 

  • Downing JA, Cole JJ, Middelburg JJ, Striegl RG, Duarte CM, Kortelainen P, Prairie YT, Laube KA. 2008. Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Glob Biogeochem Cycles 22, GB1018. https://doi.org/10.1029/2006GB002854.

  • Electricité De France. 2014. Travaux et vidange de la retenue de Sarrans. Electricité De France, Unité de Production Centre, Groupe d’Exploitation hydraulique Lot-Truyère.

  • Félix-Faure J. (in prep.) Evolution des sols ennoyés par les réservoirs hydroélectriques. Conséquences écologiques. Thèse de doctorat: Pédologie, Limnologie; Chambéry: Université de Savoie Mont-Blanc.

  • Félix-Faure J, Chanudet V, Walter C, Dorioz J-M, Baudoin J-M, Gaillard J, Lissolo T, Descloux S, Dambrine E. 2017. Evolution des sols ennoyés sous les retenues de barrage: influence sur l’écologie des plans d’eau et la dynamique des gaz à effet de serre. Étude Gest Sols 24:45–58.

    Google Scholar 

  • Finlay J, Small GE, Sterner RW. 2013. Human influences on nitrogen removal in lakes. Science 342:247–50.

    Article  CAS  PubMed  Google Scholar 

  • Furey PC, Nordin RN, Mazumder A. 2004. Water level drawdown affects physical and biogeochemical properties of littoral sediments of a reservoir and a natural lake. Lake Reserv Manag 20:260–95.

    Article  Google Scholar 

  • Garnier J, Leporcq B, Sanchez N, Philippon X. 1999. Biogeochemical mass-balances (C, N, P, Si) in three large reservoirs of the Seine Basin (France). Biogeochemistry 47:119–46.

    Google Scholar 

  • Grimard Y, Jones HG. 1982. Trophic upsurge in new reservoirs: a model for total phosphorus concentrations. Can J Fish Aquat Sci 39:1473–83.

    Article  CAS  Google Scholar 

  • Guérin F, Abril G, de Junet A, Bonnet M-P. 2008. Anaerobic decomposition of tropical soils and plant material: implication for the CO2 and CH4 budget of the Petit Saut Reservoir. Appl Geochem 23:2272–83.

    Article  CAS  Google Scholar 

  • Hakanson L. 1980. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res 14:975–1001.

    Article  Google Scholar 

  • Hall RI, Leavitt PR, Dixit AS, Quinlan R, Smol JP. 1999. Limnological succession in reservoirs: a paleolimnological comparison of two methods of reservoir formation. Can J Fish Aquat Sci 56:1109–21.

    Article  Google Scholar 

  • Hallot E, Benoit M, Stasse G, Boulvain F, Leclercq L, Petit F, Juvigné E. 2012. L’envasement du lac de Butgenbach (Ardenne, Belgique). Bull Société Géographique Liège 59:39–57.

    Google Scholar 

  • Hayes NM, Deemer BR, Corman JR, Razavi NR, Strock KE. 2017. Key differences between lakes and reservoirs modify climate signals: a case for a new conceptual model: lakes and reservoirs modify climate signals. Limnol Oceanogr Lett 2:47–62.

    Article  Google Scholar 

  • Hellsten SK. 1997. Environmental factors related to water level regulation—a comparative study in northern Finland. Boreal Environ Res 2:345–68.

    Google Scholar 

  • Horowitz AJ. 2003. An evaluation of sediment rating curves for estimating suspended sediment concentrations for subsequent flux calculations. Hydrol Process 17:3387–409.

    Article  Google Scholar 

  • Houel S, Louchouarn P, Lucotte M, Canuel R, Ghaleb B. 2006. Translocation of soil organic matter following reservoir impoundment in boreal systems: implications for in situ productivity. Limnol Oceanogr 51:1497–513.

    Article  CAS  Google Scholar 

  • INRA. Laboratoire d’analyses des sols d’arras. https://www6.npc.inra.fr/las.

  • INRA. Plateforme Technique d’Ecologie Fonctionnelle (PTEF). https://www6.nancy.inra.fr/eef/Plateformes/Ecologie-fonctionnelle/Presentation.

  • INSEE. 2017. Institut National de la Statistique et des Etudes Economiques. https://www.insee.fr/fr/statistiques. Last accessed 15/03/2017.

  • Kelly CA, Rudd JW, St Louis VL, Moore T. 1994. Turning attention to reservoir surfaces, a neglected area in greenhouse studies. Eos Trans Am Geophys Union 75:332–3.

    Article  Google Scholar 

  • Kendall C, Silva SR, Kelly VJ. 2001. Carbon and nitrogen isotopic compositions of particulate organic matter in four large river systems across the United States. Hydrol Process 15:1301–46.

    Article  Google Scholar 

  • Kim Y, Roulet NT, Li C, Frolking S, Strachan IB, Peng C, Teodoru CR, Prairie YT, Tremblay A. 2016. Simulating carbon dioxide exchange in boreal ecosystems flooded by reservoirs. Ecol Model 327:1–17.

    Article  CAS  Google Scholar 

  • Kõiv T, Nõges T, Laas A. 2011. Phosphorus retention as a function of external loading, hydraulic turnover time, area and relative depth in 54 lakes and reservoirs. Hydrobiologia 660:105–15.

    Article  CAS  Google Scholar 

  • Kraus TEC, Bergamaschi BA, Hernes PJ, Doctor D, Kendall C, Downing BD, Losee RF. 2011. How reservoirs alter drinking water quality: Organic matter sources, sinks, and transformations. Lake Reserv Manag 27:205–19.

    Article  CAS  Google Scholar 

  • LaZerte BD. 1983. Stable carbon isotope ratios: implications for the source of sediment carbon and for phytoplankton carbon assimilation in lake memphremagog Quebec. Can J Fish Aquat Sci 40:1658–66.

    Article  CAS  Google Scholar 

  • Le Gonidec C, Grimaldi C, Crave A, Rollet A-J, Beauchamp A, Lespez L, Fovet O, Vergnaud V. 2016. Dynamique fluviale: flux hydriques, sédimentaires et chimiques et Géomorphologie. Rapport bilan 2013–2015 du programme Sélune; Phase pré-arasement. Agence de l’Eau Seine-Normandie.

  • Maleval V. 2009. Le lac de Saint-Pardoux. Evolution du littoral et sédimentation lacustre. Clermont-Ferrand: Presses Universitaires Blaise Pascal.

    Google Scholar 

  • Newbury RW, McCullough GK. 1984. Shoreline erosion and restabilization in the Southern Indian Lake reservoir. Can J Fish Aquat Sci 41:558–66.

    Article  Google Scholar 

  • Northcote TG, Atagi DY. 1997. Ecological interactions in the flooded littoral zone of reservoirs: the importance and role of submerged terrestrial vegetation with special reference to fish, fish habitat and fisheries in the Nechako Reservoir of British Columbia, Canada. Lands and Parks: Ministry of Environment.

    Google Scholar 

  • Ostrofsky ML. 1978. Trophic changes in reservoirs; an hypothesis using phosphorus budget models. Int Rev Gesamten Hydrobiol Hydrogr 63:481–99.

    Article  CAS  Google Scholar 

  • Pourriot R, Meybeck M. 1995. Limnologie générale. MASSON.

  • Prairie YT, Alm J, Beaulieu J, Barros N, Battin T, Cole J, del Giorgio P, DelSontro T, Guérin F, Harby A, Harrison J, Mercier-Blais S, Serça D, Sobek S, Vachon D. 2017. Greenhouse Gas Emissions from Freshwater Reservoirs: What Does the Atmosphere See? Ecosystems. http://link.springer.com/10.1007/s10021-017-0198-9. Last accessed 15/11/2017.

  • Ryding S-O, Rast W. 1993. Le contrôle de l’eutrophisation des lacs et des réservoirs. Paris: Elsevier Masson.

    Google Scholar 

  • Saint Louis VL, Kelly CA, Duchemin É, Rudd JW, Rosenberg DM. 2000. Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. BioScience 50:766–75.

    Article  Google Scholar 

  • Schäfer J, Blanc G, Lapaquellerie Y, Maillet N, Maneux E, Etcheber H. 2002. Ten-year observation of the Gironde tributary fluvial system: fluxes of suspended matter, particulate organic carbon and cadmium. Mar Chem 79:229–42.

    Article  Google Scholar 

  • Teodoru CR, Prairie YT, del Giorgio PA. 2011. Spatial heterogeneity of surface CO2 fluxes in a newly created eastmain-1 reservoir in northern Quebec, Canada. Ecosystems 14:28–46.

    Article  CAS  Google Scholar 

  • Turgeon K, Solomon CT, Nozais C, Gregory-Eaves I. 2015. Fish population dynamics and diversity in boreal and temperate reservoirs: a quantitative synthesis. bioRxiv, The preprint server for biology.

  • Wang W, Roulet NT, Kim Y, Strachan IB, del Giorgio P, Prairie YT, Tremblay A. 2017. Modelling CO2 emissions from water surface of a boreal hydroelectric reservoir. Sci Total Environ 612:392–404.

    Article  CAS  PubMed  Google Scholar 

  • Weissenberger S, Lucotte M, Houel S, Soumis N, Duchemin É, Canuel R. 2010. Modeling the carbon dynamics of the La Grande hydroelectric complex in northern Quebec. Ecol Model 221:610–20.

    Article  CAS  Google Scholar 

  • WRB. 2015. World reference base for soil resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. Rome: FAO.

    Google Scholar 

  • Zhang Y, Li C, Trettin CC, Li H, Sun G. 2002. An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems: soil, hydrology, vegetation integrated model. Glob Biogeochem Cycles 16:9-1–-17.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim Félix-Faure.

Additional information

Authors’ contribution:

JF-F wrote the paper, analysed and collected the data, and performed the research. JB collected and analysed the data. SD conceived of idea or designed the study, and wrote the paper. VC conceived of idea or designed the study, and wrote the paper. AP wrote the paper. J-MB wrote the paper. J-NA collected and analysed the data. AM collected and analysed the data. ED conceived of the idea or designed study, wrote the paper, collected and analysed the data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Félix-Faure, J., Gaillard, J., Descloux, S. et al. Contribution of Flooded Soils to Sediment and Nutrient Fluxes in a Hydropower Reservoir (Sarrans, Central France). Ecosystems 22, 312–330 (2019). https://doi.org/10.1007/s10021-018-0274-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-018-0274-9

Keywords

Navigation