Skip to main content

Advertisement

Log in

Greenhouse Gas Emissions from Freshwater Reservoirs: What Does the Atmosphere See?

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Freshwater reservoirs are a known source of greenhouse gas (GHG) to the atmosphere, but their quantitative significance is still only loosely constrained. Although part of this uncertainty can be attributed to the difficulties in measuring highly variable fluxes, it is also the result of a lack of a clear accounting methodology, particularly about what constitutes new emissions and potential new sinks. In this paper, we review the main processes involved in the generation of GHG in reservoir systems and propose a simple approach to quantify the reservoir GHG footprint in terms of the net changes in GHG fluxes to the atmosphere induced by damming, that is, ‘what the atmosphere sees.’ The approach takes into account the pre-impoundment GHG balance of the landscape, the temporal evolution of reservoir GHG emission profile as well as the natural emissions that are displaced to or away from the reservoir site resulting from hydrological and other changes. It also clarifies the portion of the reservoir carbon burial that can potentially be considered an offset to GHG emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2

Similar content being viewed by others

References

  • Abril G, Guérin F, Richard S, Delmas R, Galy-Lacaux C, Gosse P, Tremblay A, Varfalvy L, Dos Santos MA, Matvienko B. 2005. Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). Global Biogeochem Cycles 19:1–16.

    Article  CAS  Google Scholar 

  • Abril G, Parize M, Pérez MAP, Filizola N. 2013. Wood decomposition in Amazonian hydropower reservoirs: an additional source of greenhouse gases. J South Am Earth Sci 44:104–7.

    Article  CAS  Google Scholar 

  • Algesten G, Sobek S, Bergström AK, Ågren A, Tranvik LJ, Jansson M. 2004. Role of lakes for organic carbon cycling in the boreal zone. Glob Change Biol 10:141–7.

    Article  Google Scholar 

  • Barros N, Cole JJ, Tranvik LJ, Prairie YT, Bastviken D, Huszar VLM, del Giorgio PA, Roland F. 2011. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat Geosci 4:593–6.

    Article  CAS  Google Scholar 

  • Bastien J. 2005. Impacts of ultraviolet radiation on aquatic exosystems: greenhouse gas emissions and implications for hydroelectric reservoirs. In: Tremblay, Varfalvy, Roehm and Garneau, Eds. Chapter 21, GHG Emissions from Boreal Reservoirs and Natural Aquatic Ecosystems. In: Greenhouse Gas Emissions—Fluxes and Processes pp 509–27.

  • Bastviken D, Ejlertsson J, Tranvik LJ. 2002. Measurement of methane oxidation in lakes: a comparison of methods. Environ Sci Technol 36:3354–61.

    Article  PubMed  CAS  Google Scholar 

  • Bastviken D, Persson L, Odham G, Tranvik L. 2004a. Degradation of dissolved organic matter in oxic and anoxic lake water. Limnol Oceanogr 49:109–16.

    Article  CAS  Google Scholar 

  • Bastviken D, Cole J, Pace M, Tranvik L. 2004b. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob Biogeochem Cycles 18:1–12.

    Article  CAS  Google Scholar 

  • Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-prast A. 2011. Freshwater methane emissions offset the continental carbon sink. Science 331:50.

    Article  PubMed  CAS  Google Scholar 

  • Bernardo JWY, Mannich M, Hilgert S, Fernandes CVS, Bleninger T. 2016. A method for the assessment of long-term changes in carbon stock by construction of a hydropower reservoir. AMBIO 4:1–12.

    Google Scholar 

  • Blodau C, Moore TR. 2003. Experimental response of peatland carbon dynamics to a water table fluctuation. Aqua Sci 65:47–62.

    Article  CAS  Google Scholar 

  • Bogard MJ, del Giorgio PA, Boutet L, Chaves MCG, Prairie YT, Merante A, Derry AM. 2014. Oxic water column methanogenesis as a major component of aquatic CH4 fluxes. Nat Commun 5:5350.

    Article  PubMed  CAS  Google Scholar 

  • Borges AV, Darchambeau F, Teodoru CR, Marwick TR, Tamooh F, Geeraert N, Omengo FO, Guérin F, Lambert T, Morana C, Okuku E, Bouillon S. 2015. Globally significant greenhouse-gas emissions from African inland waters. Nat Geosci 8:637–42.

    Article  CAS  Google Scholar 

  • Boudreau BP, Ruddick BR. 1991. On a reactive continuum representation of organic matter diagenesis. Am J Sci 291:507–38.

    Article  CAS  Google Scholar 

  • Butman D, Raymond PA. 2011. Significant efflux of carbon dioxide from streams and rivers in the United States. Nat Geosci 4:1–4.

    Article  CAS  Google Scholar 

  • Cailleaud E. 2015. Cycles du carbone et de l’azote et émissions de gaz à effet de serre (CH4, CO2 et N2O) du lac de barrage de Petit Saut et du fleuve Sinnamary en aval du barrage (Guyane Française) (PhD dissertation). Toulouse: Université de Toulouse.

    Google Scholar 

  • Catalán N, Kellerman AM, Peter H, Carmona F, Tranvik LJ. 2015. Absence of a priming effect on dissolved organic carbon degradation in lake water. Limnol Oceanogr 60:159–68.

    Article  CAS  Google Scholar 

  • Chanudet V, Descloux S, Harby A, Sundt H, Hansen BH, Brakstad O, Serça D, Guérin F. 2011. Gross CO2 and CH4 emissions from the Nam Ngum and Nam Leuk sub-tropical reservoirs in Lao PDR. Sci Total Environ 409:5382–91.

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Wu Y, Yuan X, Gao Y, Wu N, Zhu D. 2009. Methane emissions from newly created marshes in the drawdown area of the Three Gorges Reservoir. J Geophys Res 114:GB4007. https://doi.org/10.1029/2009JD012410.

    Article  CAS  Google Scholar 

  • Clow DW, Stackpoole SM, Verdin KL, Butman DE, Zhu Z, Krabbenhoft DP, Striegl RG. 2015. Organic carbon burial in lakes and reservoirs of the conterminous United States. Environ Sci Technol 49:7614–22.

    Article  PubMed  CAS  Google Scholar 

  • Cole J, Prairie YT, Caraco N, Mcdowell W, Tranvik L, Striegl R, Duarte C, Kortelainen P, Downing J, Middelburg J, Melack J. 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–84.

    Article  CAS  Google Scholar 

  • Conrad R. 2005. Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal. Org Geochem 36:739–52.

    Article  CAS  Google Scholar 

  • Courchesne F, Turmel MC. 2005. Mass blance of organic carbon in the soils of forested watersheds from northeastern Noarth America. In: Tremblay, Varfalvy, Roehm, Garneau, Eds. Chapter 16 in GHG emissions from boreal reservoirs and natural aquatic ecosystems. Greenhouse Gas Emissions—Fluxes and Processes, pp 383–420.

  • Coursolle C, Margolis HA, Giasson MA, Bernier PY, Amiro BD, Arain MA, Barr AG, Black TA, Goulden ML, McCaughey JH, Chen JM, Dunn AL, Grant RF, Lafleur PM. 2012. Influence of stand age on the magnitude and seasonality of carbon fluxes in Canadian forests. Agric For Meteorol 165:136–48.

    Article  Google Scholar 

  • Dean WE, Gorham E. 1998. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology 26:535–8.

    Article  Google Scholar 

  • Deemer BR, Harrison JA, Li S, Beaulieu JJ, DelSontro T, Barros N, Bezerra-Neto JF, Powers SM, Dos Santos MA, Vonk JA. 2016. greenhouse gas emissions from reservoir water surfaces: a new global synthesis manuscript. BioScience 66:949–64.

    Article  Google Scholar 

  • Delmas R, Galy-lacaux C. 2001. Emissions of greenhouse gases from the tropical hydroelectric reservoir of Petit Saut (French Guiana) compared with emissions from thermal alternatives. Glob Biogeochem Cycles 15:993–1003.

    Article  CAS  Google Scholar 

  • DelSontro T, Kunz MJ, Kempter T, Wüest A, Wehrli B, Senn DB. 2011. Spatial heterogeneity of methane ebullition in a large tropical reservoir. Environ Sci Technol 45:9866–73.

    Article  PubMed  CAS  Google Scholar 

  • DelSontro T, Mcginnis DF, Sobek S, Ostrovsky I, Wehrli B. 2010. Extreme methane emissions from a swiss hydropower Reservoir: contribution from bubbling sediments. Environ Sci Technol 44:2419–25.

    Article  PubMed  CAS  Google Scholar 

  • DelSontro T, Boutet L, St-Pierre A, del Giorgio PA, Prairie YT. 2016. Methane ebullition and diffusion from northern ponds and lakes regulated by the interaction between temperature and system productivity. Limnol Oceanogr 61:S62–77.

    Article  CAS  Google Scholar 

  • DelSontro T, del Giorgio PA, Prairie YT. 2017. No longer a paradox: the interaction between physical transport and biological processes explains the spatial distribution of methane within and across lakes. Ecosystems (Accepted).

  • Descloux S, Chanudet V, Serça D, Guérin F. 2017. Methane and nitrous oxide annual emissions from an old eutrophic temperate reservoir. Sci Total Environ 598:959–72.

    Article  PubMed  CAS  Google Scholar 

  • Deshmukh C, Guérin F, Labat D, Pighini S, Vongkhamsao A, Guédant P, Rode W, Godon A, Chanudet V, Descloux S, Serça D. 2016. Low methane (CH4) emissions downstream of a monomictic subtropical hydroelectric reservoir. Biogeosciences 13:1919–32.

    Article  CAS  Google Scholar 

  • Dillon PJ, Molot L. 1997. Dissolved organic and inorganic carbon mass balances in central Ontario lakes. Biogeochemistry 36:29–42.

    Article  CAS  Google Scholar 

  • Downing JA, Cole JJ, Middelburg JJ, Striegl RG, Duarte CM, Kortelainen P, Prairie YT, Laube KA. 2008. Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Glob Biogeochem Cycles 22.

  • de Faria FAM, Jaramillo P, Sawakuchi HO, Richey JE, Barros N. 2015. Estimating greenhouse gas emissions from future Amazonian hydroelectric reservoirs. Environ Res Lett 10:124019.

    Article  Google Scholar 

  • dos Santos MA, Damázio JM, Rogério JP, Amorim MA, Medeiros AM, Abreu JLS, Maceira MEP, Melo AC, Rosa LP. 2017. Estimates of GHG emissions by hydroelectric reservoirs: the Brazilian case. Energy 133:99–107.

    Article  Google Scholar 

  • Fearnside PM. 2006. Greenhouse gas emissions from hydroelectric dams: reply to Rosa and others. Climatic Change 75:103–9.

    Article  CAS  Google Scholar 

  • Fearnside PM. 2016. Greenhouse gas emissions from Brazil’s Amazonian hydroelectric dams. Environ Res Lett 11:11002.

    Article  CAS  Google Scholar 

  • Fearnside PM, Pueyo S. 2012. Greenhouse-gas emissions from tropical dams. Nat Clim Change 2:382–4.

    Article  CAS  Google Scholar 

  • Ferland ME, del Giorgio PA, Teodoru C, Prairie YT. 2012. Long-term C accumulation and total C stocks in boreal lakes in northern Québec. Glob Biogeochem Cycles 26:1–10.

    Article  CAS  Google Scholar 

  • Ferland ME, Prairie YT, Teodoru C, del Giorgio PA. 2014. Linking organic carbon sedimentation, burial efficiency, and long-term accumulation in boreal lakes. J Geophys Res Biogeosci 119:836–47.

    Article  CAS  Google Scholar 

  • Gagnon L, Bélanger C, Uchiyama Y. 2002. Life-cycle assessment of electricity generation options: the status of research in year 2001. Energy Policy 30:1267–78.

    Article  Google Scholar 

  • Gälman V, Rydberg J, de-Luna SS, Bindler R, Renberg I. 2008. Carbon and nitrogen loss rates during aging of lake sediment: changes over 27 years studied in varved lake sediment. Limnol Oceanogr 53:1076–82.

    Article  Google Scholar 

  • Giles J. 2006. Methane quashes green credentials of hydropower. Nature 444:524–5.

    PubMed  Google Scholar 

  • Grinham AA, Dunbabin MB, Gale DC, Udy JC. 2011. Quantification of ebullitive and diffusive methane release to atmosphere from a water storage. Atmos Environ 45:7166–73.

    Article  CAS  Google Scholar 

  • Grossart H-P, Frindte K, Dziallas C, Eckert W, Tang KW. 2011. Microbial methane production in oxygenated water column of an oligotrophic lake. Proc Nat Acad Sci USA 108:19657–61.

    Article  PubMed  Google Scholar 

  • Gudasz C, Bastviken D, Steger K, Premke K, Sobek S, Tranvik L. 2010. Temperature-controlled organic carbon mineralization in lake sediments. Nature 466:478–81.

    Article  PubMed  CAS  Google Scholar 

  • Guenet B, Danger M, Abbadie L, Lacroix G. 2010. Priming effect: bridging the gap between terrestrial and aquatic ecology. Ecology 91:2850–61.

    Article  PubMed  Google Scholar 

  • Guérin F, Abril G. 2007. Significance of pelagic aerobic methane oxidation in the methane and carbon budget of a tropical reservoir. J Geophys Res G: Biogeosci 112.

  • Guérin F, Abril G, de Junet A, Bonnet MP. 2008. Anaerobic decomposition of tropical soils and plant material: implication for the CO2 and CH4 budget of the Petit Saut Reservoir. Appl Geochem 23:2272–83.

    Article  CAS  Google Scholar 

  • Guérin F, Abril G, Richard S, Burban B, Reynouard C, Seyler P, Delmas R. 2006. Methane and carbon dioxide emissions from tropical reservoirs: Significance of downstream rivers. Geophys Res Lett 33:1–6.

    Article  CAS  Google Scholar 

  • Harrison JA, Deemer BR, Birchfield MK, O’Malley MT. 2017. reservoir water-level drawdowns accelerate and amplify methane emission. Environ Sci Technol 51:1267–77.

    Article  PubMed  CAS  Google Scholar 

  • Hassink J. 1997. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 191:77–87.

    Article  CAS  Google Scholar 

  • Hertwich EG. 2013. Addressing biogenic greenhouse gas emissions from hydropower in LCA. Environ Sci Technol 47:9604–11.

    Article  PubMed  CAS  Google Scholar 

  • Holgerson MA, Raymond PA. 2016. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat Geosci pp 1–7.

  • Hotchkiss ER, Hall RO Jr, Sponseller RA, Butman D, Klaminder J, Laudon H, Rosvall M, Karlsson J. 2015. Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nat Geosci 8:696–9.

    Article  CAS  Google Scholar 

  • IEA Hydropower. 2012. Guidelines for quantitative analysis of net GHG emissions from reservoirs–Volume 1: measurement programs and data analysis, Annex XII.

  • IPCC, 2013. Climate change 2013: the physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, Eds. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, https://doi.org/10.1017/CBO9781107415324.

  • Kemenes A, Forsberg BR, Melack JM. 2007. Methane release below a tropical hydroelectric dam. Geophys Res Lett 34:1–5.

    Article  CAS  Google Scholar 

  • Kim Y, Ullah S, Roulet NT, Moore TR. 2015. Effect of inundation, oxygen and temperature on carbon mineralization in boreal ecosystems. Sci Total Environ 511:381–92.

    Article  PubMed  CAS  Google Scholar 

  • Koehler B, Von Wachenfeldt E, Kothawala D, Tranvik LJ. 2012. Reactivity continuum of dissolved organic carbon decomposition in lake water. J Geophys Res: Biogeosci 117:1–14.

    Article  CAS  Google Scholar 

  • Lehner B, Liermann CR, Revenga C, Vörömsmarty C, Fekete B, Crouzet P, Döll P, Endejan M, Frenken K, Magome J, Nilsson C, Robertson JC, Rödel R, Sindorf N, Wisser D. 2011. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Frontiers Ecol Environ 9:494–502.

    Article  Google Scholar 

  • Li Z, Zhang Z, Lin C, Chen Y, Wen A, Fang F. 2016. Soil-air greenhouse gas fluxes influenced by farming practices in reservoir drawdown area: a case at the Three Gorges Reservoir in China. J Environ Manag 181:64–73.

    Article  CAS  Google Scholar 

  • Linn DM, Doran JW. 1984. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci Soc Am J 48:1267–72.

    Article  CAS  Google Scholar 

  • Maavara T, Lauerwald R, Regnier P, Van Cappellen P. 2017. Global perturbation of organic carbon cycling by river damming. Nat Commun 8:1–10.

    Article  CAS  Google Scholar 

  • Maeck A, DelSontro T, McGinnis DF, Fischer H, Flury S, Schmidt M, Fietzek P, Lorke A. 2013. Sediment trapping by dams creates methane emission hot spots. Environ Sci Technol 47:8130–7.

    Article  PubMed  CAS  Google Scholar 

  • McGinnis D, Greinert J, Artemov Y, Beaubien S, Wüest A. 2006. Fate of rising methane bubbles in stratified waters: how much methane reaches the atmosphere. J Geophys Res 111:C09007.

    Article  CAS  Google Scholar 

  • McGinnis DF, Kirillin G, Tang KW, Flury S, Bodmer P, Engelhardt C, Casper P, Grossart HP. 2015. Enhancing surface methane fluxes from an oligotrophic lake: exploring the microbubble hypothesis. Environ Sci Technol 49:873–80.

    Article  PubMed  CAS  Google Scholar 

  • Mendonça R, Barros N, Vidal LO, Pacheco F, Kosten S, Roland F. 2012. Greenhouse gas emissions from hydroelectric reservoirs: what knowledge do we have and what is lacking Greenhouse gases-emission, measurement and management pp 55–78.

  • Mendonça R, Kosten S, Sobek S, Cole JJ, Bastos AC, Albuquerque AL, Cardoso SJ, Roland F. 2014. Carbon sequestration in a large hydroelectric reservoir: an integrative seismic approach. Ecosystems.

  • Musenze RS, Grinham A, Werner U, Gale D, Sturm K, Udy J, Yuan Z. 2014. Assessing the spatial and temporal variability of diffusive methane and nitrous oxide emissions from subtropical freshwater reservoirs. Environ Sci Technol 48:14499–507.

    Article  PubMed  CAS  Google Scholar 

  • Oelbermann M, Schiff SL. 2008. Quantifying carbon dioxide and methane emissions and carbon dynamics from flooded boreal forest soil. J Environ Q 37:2037–47.

    Article  CAS  Google Scholar 

  • Ostrovsky I, McGinnis DF, Lapidus L, Eckert W. 2008. Quantifying gas ebullition with echosounder: the role of methane transport by bubbles in a medium-sized lake. Limnol Oceanogr 6:105–18.

    Article  CAS  Google Scholar 

  • Pace ML, Prairie YT. 2005. Respiration in lakes. Resp Aqu Ecosyst 1:103–22.

    Article  Google Scholar 

  • Prairie YT, del Giorgio PA. 2013. A new pathway of freshwater methane emissions and the putative importance of microbubbles. Inland Waters 3:311–20.

    Article  CAS  Google Scholar 

  • Prairie YT, Alm J, Harby A, Mercier-Blais S, Nahas R. 2017. The GHG Reservoir Tool (G-res) Technical documentation, UNESCO/IHA research project on the GHG status of freshwater reservoirs. Joint publication of the UNESCO Chair in Global Environmental Change and the International Hydropower Association. p. 76.

  • Rasilo T, Prairie YT, del Giorgio PA. 2014. Large-scale patterns in summer diffusive CH 4fluxes across boreal lakes, and contribution to diffusive C emissions. Glob Change Biol 21:1124–39.

    Article  Google Scholar 

  • Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, Kortelainen P, Dürr H, Meybeck M, Ciais P, Guth P. 2013. Global carbon dioxide emissions from inland waters. Nature 503:355–9.

    Article  PubMed  CAS  Google Scholar 

  • Rosa LP, dos Santos MA, Matvienko B, Sikar E. 2006. Scientific errors in the fearnside comments on greenhouse gas emissions (GHG) from hydroelectric dams and response to his political claiming. Clim Change 75:91–102.

    Article  Google Scholar 

  • Rudd JWM, Hecky RE, Harris R, Kelly CA. 1993. Are hydroelectric reservoirs significant sources of greenhouse gases? Ambio 22:246–8.

    Google Scholar 

  • Serça D, Deshmukh C, Pighini S, Oudone P, Vongkhamsao A, Guédant P, Rode W, Godon A, Chanudet V, Descloux S, Guérin F. 2016. Nam Theun 2 Reservoir four years after commissioning: significance of drawdown methane emissions and other pathways. Hydroécologie Appliquée 19:119–46.

    Article  Google Scholar 

  • Sikar E, Matvienko B, Santos MA, Rosa L, Silva MB, dos Santos E, Rocha CHED, Bentes AP. 2009. Tropical reservoirs are bigger carbon sinks than soils. Verh. Internat. Verein. Limnol. 30:838–40.

    CAS  Google Scholar 

  • Sobek S, Tranvik LJ, Prairie YT, Kortelainen P, Cole JJ. 2007. Patterns and regulation of dissolved organic carbon: an analysis of 7,500 widely distributed lakes. Limnol Oceanogr 52:1208–19.

    Article  CAS  Google Scholar 

  • Sobek S, Durisch-Kaiser E, Zurbrügg R, Wongfun N, Wessels M, Pasche N, Wehrli B. 2009. Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source. Limnol Oceanogr 54:2243–54.

    Article  Google Scholar 

  • Sobek S, DeSontro T, Wongfun N, Wehrli B. 2012. Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir. Geophys Res Lett 39:2–5.

    Article  CAS  Google Scholar 

  • St. Louis VL, Kelly CA, Duchemin E, Rudd JWM, Rosenberg DM. 2000. Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. BioScience 50:766–75.

    Article  Google Scholar 

  • Teodoru CR, Bastien J, Bonneville MC, del Giorgio PA, Demarty M, Garneau M, Hélie JF, Pelletier L, Prairie YT, Roulet NT, Strachan IB, Tremblay A. 2012. The net carbon footprint of a newly created boreal hydroelectric reservoir. Glob Biogeochem Cycles 26:1–14.

    Article  CAS  Google Scholar 

  • Teranes JL, Bernasconi SM. 2000. The record of nitrate utilization and productivity limitation provided by δ15 N values in lake organic matter—A study of sediment trap and core sediments from Baldeggersee, Switzerland. Limnol Oceanogr 45:801–13.

    Article  CAS  Google Scholar 

  • Thérien N, Morrison K. 2005. Production of GHG from the decomposition of in vitro inundated phytomass and soil. In: Tremblay, Varfalvy, Roehm and Garneau, Eds, Chapter 13, GHG emissions from boreal reservoirs and natural aquatic ecosystems. Greenhouse gas emissions—fluxes and processes pp 315–338.

  • Tranvik L, Downing J, Cotner J, Loiselle S, Striegl R, Ballatore T, Dillon P, Finlay K, Fortino K, Knoll L, Kortelainen P, Kutser T, Larsen S, Laurion I, Leech D, McCallister S, McKnight D, Melack J, Overholt E, Porter J, Sobek S, Tremblay A, Vanni M, Verschoor A, Wachenfeldt E, Weyhenmeyer G. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–314.

    Article  CAS  Google Scholar 

  • Tremblay A, Therrien J, Hamlin B, Wichmann E, Ledrew LJ. 2005a. Chap. 8 GHG Emissions from Boreal Reservoirs and Natural Aquatic Ecosystems. In: Tremblay, Varfalvy, Roehm, Garneau, Eds, GHG emissions from boreal reservoirs and natural aquatic ecosystems. Greenhouse gas emissions—fluxes and processes pp 209–232.

  • Tremblay A, Valfalvy L, Roehm C and Garneau M. 2005b. Synthesis, In: Tremblay, Varfalvy, Roehm, Garneau, Eds, GHG emissions from boreal reservoirs and natural aquatic ecosystems. Greenhouse gas emissions—fluxes and processes. pp 637–659.

  • Vachon D, Solomon CT, del Giorgio PA. 2016a. Reconstructing the seasonal dynamics and relative contribution of the major processes sustaining CO2 emissions in northern lakes. Limnol Oceanogr 62:706–22. https://doi.org/10.1002/lno.10454.

    Article  CAS  Google Scholar 

  • Vachon D, Prairie YT, Guillemette F, del Giorgio PA. 2016b. Modeling allochthonous dissolved organic carbon mineralization under variable hydrologic regimes in Boreal Lakes. Ecosystems 53:1–15.

    Google Scholar 

  • Vörösmarty CJ, Meybeck M, Fekete B, Sharma K, Green P, Syvitski JPM. 2003. Anthropogenic sediment retention: major global impact from registered river impoundments. Glob Planet Change 39:169–90.

    Article  Google Scholar 

  • Wilkinson J, Maeck A, Alshboul Z, Lorke A. 2015. Continuous seasonal river ebullition measurements linked to sediment methane formation. Environ Sci Technol 49:13121–9.

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Lu F, Wang X, Duan X, Song W, Sun B, Chen S, Zhang Q, Hou P, Zheng F, Zhang Y, Zhou X, Zhou Y, Ouyang Z. 2012. Surface methane emissions from different land use types during various water levels in three major drawdown areas of the three gorges reservoir. J Geophys Res 117:D10109. https://doi.org/10.1029/2011JD017362.

    Article  CAS  Google Scholar 

  • Zarfl C, Lumsdon AE, Berlekamp J, Tydecks L, Tockner K. 2014. A global boom in hydropower dam construction. Aqua Sci 77:161–70.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves T. Prairie.

Additional information

Author contributions

YTP conceived the study, contributed new models and wrote the paper, while all other co-authors contributed to the conceptual development presented therein and also all participated in writing of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prairie, Y.T., Alm, J., Beaulieu, J. et al. Greenhouse Gas Emissions from Freshwater Reservoirs: What Does the Atmosphere See?. Ecosystems 21, 1058–1071 (2018). https://doi.org/10.1007/s10021-017-0198-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-017-0198-9

Keywords

Navigation