Skip to main content

Advertisement

Log in

Extreme Weather Event Triggers Cascade Towards Extreme Turbidity in a Clear-water Lake

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Climate forecasts project a global increase in extreme weather events, but information on the consequences for ecosystems is scarce. Of particular significance for lakes are severe storms that can influence biogeochemical processes and biological communities by disrupting the vertical thermal structure during periods of stratification. An exceptional storm passing over northern Germany in July 2011 provided an opportunity to assess the consequences and underlying mechanisms of such extreme events on the interplay between the physics and ecological characteristics of a deep, nutrient-poor lake. Wind speeds were among the most extreme on record. A suite of variables measured throughout the event consistently indicates that a cascade of processes pushed the clear-water lake into an exceptionally turbid state. Specifically, thermocline deepening by the storm-entrained cyanobacteria of a deep chlorophyll maximum located at about 8 m depth into the surface mixed layer. Released from light limitation, intense photosynthesis of the cyanobacteria boosted primary production, increased algal biomass, raised the pH and thus induced massive calcite precipitation to a level never observed within three decades of lake monitoring. As a consequence, water transparency dropped from 6.5 to 2.1 m, the minimum on record for 40 years, and the euphotic zone shrank by about 8 m for several weeks. These results show that cyanobacterial blooms not only are promoted by climate warming, but can also be triggered by extreme storms. Clear-water lakes developing a deep chlorophyll maximum appear to be particularly at risk in the future, if such events become more intense or frequent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adler M, Gervais F, Siedel U. 2000. Phytoplankton composition in the thermocline of mesotrophic lakes. Arch Hydrobiol Spec Issues Adv Limnol 55:513–30.

    CAS  Google Scholar 

  • Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, van Donk E, Weyhenmeyer GA, Winderl M. 2009. Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–97.

    Article  PubMed  PubMed Central  Google Scholar 

  • Andersen T. 1997. Pelagic nutrient cycles: herbivores as sources and sinks. Berlin: Springer.

    Book  Google Scholar 

  • Ballot A, Fastner J, Lentz M, Wiedner C. 2010. First report of anatoxin-a-producing cyanobacterium Aphanizomenon issatschenkoi in northeastern Germany. Toxicon 65:964–71.

    Article  Google Scholar 

  • Barbiero RP, Tuchmann ML. 2004. The deep chlorophyll maximum in Lake Superior. J Gt Lakes Res 30(Supplement 1):256–68.

    Article  CAS  Google Scholar 

  • Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, García-Herrera R. 2011. The hot summer of 2010: redrawing the temperature record map of Europe. Science 332:220–4.

    Article  CAS  PubMed  Google Scholar 

  • Beaver JR, Casamatta DA, East TL, Havens KE, Rodusky AJ, James RT, Tausz CE, Buccier KM. 2013. Extreme weather events influence the phytoplankton community structure in a large lowland subtropical lake (Lake Okeechobee, Florida, USA). Hydrobiologia 709:213–26.

    Article  CAS  Google Scholar 

  • Beutler M, Wiltshire KH, Meyer B. 2002. A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynth Res 72:39–53.

    Article  CAS  PubMed  Google Scholar 

  • Bischoff A, Wolter C. 2001. The flood of the century on the river oder: effects on the 0 + fish community and implications for flood plain restoration. Regul Rivers Res Manag 17:171–90.

    Article  Google Scholar 

  • Blenckner T, Omstedt A, Rummukainen M. 2002. A Swedish case study of contemporary and possible future consequences of climate change on lake function. Aquat Sci 64:171–84.

    Article  Google Scholar 

  • Bright DI, Walsby AE. 1999. The relationship between critical pressure and width of gas vesicles in isolates of Planktothrix rubescens from Lake Zürich. Microbiology 145:2769–75.

    Article  CAS  PubMed  Google Scholar 

  • Bright DI, Walsby AE. 2000. The daily integral of growth by Planktothrix rubescens calculated from growth rate in culture and irradiance in Lake Zürich. New Phytol 146:301–16.

    Article  Google Scholar 

  • Brookes JD, Ganf GG, Green D, Whittington J. 1999. The influence of light and nutrients on buoyancy, filament aggregation and flotation of Anabaena circinalis. J Plankton Res 21:327–41.

    Article  Google Scholar 

  • Camacho A. 2006. On the occurrence and ecological features of deep chlorophyll maxima (DCM) in Spanish stratified lakes. Limnetica 25:453–78.

    Google Scholar 

  • Cantin A, Beisner BE, Gunn JM, Prairie YT, Winter JG. 2011. Effects of thermocline deepening on lake plankton communities. Can J Fish Aquat Sci 68:260–76.

    Article  Google Scholar 

  • Casper SJ, Krey L. 1985. Fallen leaves in Lake Stechlin area: aspects of their morphometry. In: Casper SJ, Ed. Lake Stechlin, a temperate oligotrophic lake. Dordrecht: Junk Publishers. p 401–9.

    Google Scholar 

  • Casper P. 1987. Bedeutung von terrestrischem Pflanzenmaterial für den Stoffhaushalt eines oligotrophen Gewässers (Stechlinsee). Limnologica (Berlin) 18:423–30.

    Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, de Noblet N, Friend AD, Friedlingstein P, Grünwal T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–33.

    Article  CAS  PubMed  Google Scholar 

  • Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE. 2009. Controlling eutrophication: nitrogen and phosphorus. Science 323:1014–15.

    Article  CAS  PubMed  Google Scholar 

  • Dadheech PK, Selmeczy GB, Vasas G, Padisák J, Arp W, Tapolczai K, Casper P, Krienitz L. 2014. Presence of potential toxin-producing cyanobacteria in an oligo-mesotrophic lake in the Baltic Lake District, Germany: an ecological, genetic and toxicological survey. Toxins 6:2912–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dokulil MT, Teubner K, Jagsch A, Nickus U, Adrian R, Straile D, Jankowski T, Herzig A, Padisák J. 2010. The impact of climate change on lakes in Central Europe. In: George G, Ed. The impact of climate change on European Lakes. Dordrecht: Springer. p 387–410.

    Chapter  Google Scholar 

  • Dokulil MT, Teubner K. 2012. Deep living Planktothrix rubescens modulated by environmental constraints and climate forcing. Hydrobiologia 698:29–46.

    Article  CAS  Google Scholar 

  • Droop MR. 1973. Some thoughts on nutrient limitation in algae. J Phycol 9:264–72.

    CAS  Google Scholar 

  • Feuillade J, Feuillade M, Blanc P. 1990. Alkaline phosphatase activity fluctuations and associated factors in a eutrophic lake dominated by Oscillatoria rubescens. Hydrobiologia 207:233–40.

    Article  CAS  Google Scholar 

  • Forzieri G, Feyen L, Rojas R. 2014. Ensemble projections of future streamflow droughts in Europe. Hydrol Earth Syst Sci 18:85–108.

    Article  Google Scholar 

  • Fraedrich K, Gerstengarbe FW, Werner PC. 2001. Climate shifts during the last century. Clim Change 50:405–17.

    Article  Google Scholar 

  • Gervais F. 1997. Diel vertical migration of Cryptomonas and Chromatium in the deep chlorophyll maximum of a eutrophic lake. J Plankton Res 19:533–50.

    Article  Google Scholar 

  • Gervais F, Siedel U, Heilmann B, Weithoff G, Heisig-Gunkel G, Nicklisch A. 2003. Small-scale vertical distribution of phytoplankton, nutrients and sulphide below the oxycline of a mesotrophic lake. J Plankton Res 25:273–8.

    Article  CAS  Google Scholar 

  • Giling DP, Nejstgaard JC, Berger SA, Grossart HP, Kirillin G, Penske A, Lentz M, Casper P, Sareyka J, Gessner MO. 2017. Thermocline deepening boosts ecosystem metabolism: evidence from a large-scale lake enclosure experiment simulating a summer storm. Glob Change Biol. doi:10.1111/gcb.13512.

    Google Scholar 

  • Havens KE, Beaver JR, Casamatta DA, East TL, James T, McCormic P, Philips EJ, Rodusky AJ. 2011. Hurricane effects on the planktonic food web of a large subtropical lake. J Plankton Res 33:1081–94.

    Article  Google Scholar 

  • Hepperle D, Krienitz L. 1997. Phacotus lenticularis (Chlamydomonadales, Phacotaceae) zoospores require external super-saturation of calcium carbonate for calcification in culture. J Phycol 33:415–25.

    Article  CAS  Google Scholar 

  • Holzbecher E, Nützmann G, Ginzel G. 1999. Water and component mass balances in the catchment of Lake Stechlin. Int Assoc Hydrol Sci 258:37–46.

    CAS  Google Scholar 

  • Hondzo M, Stefan HG. 1993. Regional water temperature characteristics of lakes subject to climate change. Clim Change 24:187–211.

    Article  Google Scholar 

  • Horn DA, Imberger J, Ivey GN. 2001. The degeneration of large-scale interfacial gravity waves in lakes. J Fluid Mech 434:181–207.

    Article  Google Scholar 

  • Hunkins K, Fliegel M. 1973. Internal undular surges in Seneca Lake: a natural occurrence of solitons. J Geophys Res 78:539–48.

    Article  Google Scholar 

  • Imberger J, Patterson JC. 1990. Physical limnology. Adv Appl Mech 27:303–475.

    Article  Google Scholar 

  • James RT, Chimney MJ, Sharfstein B, Engstrom DR, Schottler SP, East T, Jin KR. 2008. Hurricane effects on a shallow lake ecosystem, Lake Okeechobee, Florida (USA). Arch für Hydrobiol 172:273–87.

    Article  Google Scholar 

  • Jankowski T, Livingstone DM, Bührer H, Bührer H, Forster R, Niederhauser P. 2006. Consequences of the 2003 European heat wave for lake temperature profiles, thermal stability, and hypolimnetic oxygen depletion: Implications for a warmer world. Limnol Oceanogr 51:815–19.

    Article  Google Scholar 

  • Jennings E, Jones S, Arvola L, Staehr PA, Gaiser E, Jones ID, Weathers KC, Weyhenmeyer GA, Chiu CY, de Eyto E. 2012. Effects of weather-related episodic events in lakes: an analysis based on high-frequency data. Freshw Biol 57:589–601.

    Article  CAS  Google Scholar 

  • Jentsch A, Kreyling J, Beierkuhnlein C. 2007. A new generation of climate change experiments: events, not trends. Front Ecol Environ 5:315–24.

    Article  Google Scholar 

  • Jöhnk KD, Huisman JEF, Sharples J, Sommeijer BEN, Visser PM, Stroom JM. 2008. Summer heatwaves promote blooms of harmful cyanobacteria. Glob Change Biol 14:495–512.

    Article  Google Scholar 

  • Kaiblinger C, Greisberger S, Teubner K, Dokulil MT. 2007. Photosynthetic efficiency as a function of thermal stratification and phytoplankton size structure in an oligotrophic alpine lake. Hydrobiologia 578:29–36.

    Article  Google Scholar 

  • Kirillin G, Engelhardt C, Golosov S. 2008. A mesoscale vortex in a small stratified lake. Environ Fluid Mech 8:349–66.

    Article  Google Scholar 

  • Kirillin G, Shatwell T. 2016. Generalized scaling of seasonal thermal stratification in lakes. Earth Sci Rev 116:179–80.

    Article  Google Scholar 

  • Klausmeier CA, Litchman E. 2001. Algal games: The vertical distribution of phytoplankton in poorly mixed water columns. Limnol Oceanogr 46:1998–2007.

    Article  Google Scholar 

  • Klug JL, Richardson DC, Ewing HA, Hargreaves BR, Samal NR, Vachon D, Pierson DC, Lindsey AM, O’Donnell DM, Effler SW, Weathers KC. 2012. Ecosystem effects of a tropical cyclone on a network of lakes in north-eastern North America. Environ Sci Technol 46:11693–701.

    Article  CAS  PubMed  Google Scholar 

  • Koschel R. 1981. Phosphataffinität von Mikroorganismengesellschaften im Stechlinsee und in anderen Seen. Limnologica (Berlin) 13:129–45.

    CAS  Google Scholar 

  • Koschel R. 1995. Manipulation of whole-lake ecosystems and long-term limnological observations in the Brandenburg-Mecklenburg Lake District, Germany. Int Rev Gesamten Hydrobiol 80:507–18.

    Article  CAS  Google Scholar 

  • Koschel R, Gonsiorczyk T, Krienitz L, Padisák J, Scheffler W. 2002. Primary production of phytoplankton and nutrient metabolism during and after thermal pollution of a deep, oligotrophic lowland lake (Lake Stechlin, Germany). Verhandlungen der Internationalen Vereinigung für theoretischen und angewandte Limnologie 28:569–75.

    Google Scholar 

  • Koschel R, Adams D. 2003. An approach to understand a temperate oligotrophic lowland lake. Arch Hydrobiol Spec Issues Adv Limnol 58:1–9.

    Google Scholar 

  • Krey L. 1985. Lakes of the Lake Stechlin area: aspects of their morphometry. In: Casper SJ, Ed. Lake Stechlin, a temperate oligotrophic lake. Dordrecht: Junk Publishers. p 27–40.

    Google Scholar 

  • Lindner M, Rummikainen M. 2013. Climate change and storm damage risk in European forests. In: Gardiner B, Schuck A, Scheelhas MJ, Eds. Living with storm damage to forests; what science can tell us. Barcelona: European Forestry Institute. doi:10.13140/2.1.1730.2400.p109-115

    Google Scholar 

  • MacIntyre S, Jellison R. 2001. Nutrient fluxes from upwelling and enhanced turbulence at the top of the pycnocline in Mono Lake, California. Hydrobiologia 466:13–29.

    Article  CAS  Google Scholar 

  • MacIntyre S, Clark JF, Jellison R, Fram JP. 2009. Turbulent mixing induced by nonlinear internal waves in Mono Lake, California. Limnol Oceanogr 54:2255–72.

    Article  Google Scholar 

  • McCausland MA, Thompson PA, Blackburn SI. 2002. The effect of changes in light availability caused by mixing on the growth of Anabaena circinalis (Nostocales, Cyanobacteria) and Aulacoseira sp. (Centrales, Bacillariophyceae). Phycologia 40:530–41.

    Article  Google Scholar 

  • Mehnert G, Leunert F, Ciérs S, Jöhnk KD, Rücker J, Nixdorf B, Wiedner C. 2010. Competitiveness of invasive and native cyanobacteria from temperate freshwaters under various light and temperature conditions. J Plankton Res 32:1009–21.

    Article  CAS  Google Scholar 

  • Mellard JP, Yoshiyama K, Litchman E. 2011. The vertical distribution of phytoplankton in stratified water columns. J Theor Biol 269:16–30.

    Article  PubMed  Google Scholar 

  • Mitrovic SM, Bowlling LC, Buckney RT. 2001. Vertical disentrainment of Anabaena circinalis in the turbid, freshwater Darling River, Australia: quantifying potential benefits from buoyancy. J Plankton Res 23:47–55.

    Article  Google Scholar 

  • Moberg A, Jones PD, Lister D, Walther A, Brunet M, Jacobeit J, Alexander LV, Della-Marta PM, Luterbacher J, Yiou P, Chen D, Klein Tank AMG, Saladié O, Sigró J, Aguilar E, Alexandersson H, Almarza C, Auer I, Barriendos M, Begert M, Bergström H, Böhm R, Butler CJ, Caesar J, Drebs A, Founda D, Gerstengarbe FW, Micela G, Maugeri M, Österle H, Pandzic K, Petrakis M, Srnec L, Tolasz R, Tuomenvirta H, Werner PC, Linderholm H, Philipp A, Wanner H, Xoplaki E. 2006. Indices for daily temperature and precipitation extremes in Europe analysed for the period 1901–2000. J Geophys Res. doi:10.1029/2006JD007103.

    Google Scholar 

  • Moll RA, Stroemer EF. 1982. A hypothesis relating trophic status and subsurface chlorophyll maxima in lakes. Arch für Hydrobiol 94:425–40.

    Google Scholar 

  • Mudelsee M, Börngen M, Gerd Tetzlaff G, Grünwald U. 2003. No upward trends in the occurrence of extreme floods in central Europe. Nature 425:166–9.

    Article  CAS  PubMed  Google Scholar 

  • Ostrovsky I, Yacobi YZ, Walline P, Kalikhman I. 1996. Seiche-induced mixing: its impact on lake productivity. Limnol Oceanogr 41:323–32.

    Article  Google Scholar 

  • Padisák J, Dokulil M. 1994. Meroplankton dynamics in a saline, turbulent, turbid shallow lake (Neusiedlersee, Austria and Hungary). Hydrobiologia 289:23–42.

    Article  Google Scholar 

  • Padisák J, Krienitz L, Koschel R, Nedoma J. 1997. Deep-layer autotrophic picoplankton maximum in the oligotrophic Lake Stechlin, Germany: origin, activity, development and erosion. Eur J Phycol 32:403–16.

    Article  Google Scholar 

  • Padisak J, Barbosa F, Koschel R, Krienitz L. 2003. Deep-layer cyanoprocaryota in temperate and tropical lakes. Arch Hydrobiol Beih Adv Limnol 58:175–99.

    Google Scholar 

  • Paerl HW, Huisman J. 2008. Blooms like it hot. Science 320:57–8.

    Article  CAS  PubMed  Google Scholar 

  • Paerl HW, Paul VJ. 2012. Climate change: links to global expansion of harmful cyanobacteria. Water Res 46:1349–63.

    Article  CAS  PubMed  Google Scholar 

  • Peréz GL, Queimalinos CP, Modenutti BE. 2002. Light climate and plankton in the deep chlorophyll maxima in North Patagonian Andean lakes. J Plankton Res 24:591–9.

    Article  Google Scholar 

  • Pfeifer F. 2012. Distribution, formation and regulation of gas vesicles. Nat Rev Microbiol 10:705–15.

    Article  CAS  PubMed  Google Scholar 

  • Posch T, Köster O, Salcher MM, Pernthaler J. 2012. Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nat Clim Change 2:809–13.

    Article  CAS  Google Scholar 

  • Pöschke F, Lewandowski J, Engelhardt C, Preuß K, Oczipka M, Ruhtz T, Kirillin G. 2015. Upwelling of deep water during thermal stratification onset—A major mechanism of vertical transport in small temperate lakes in spring? Water Resour Res 51:9612–27.

    Article  Google Scholar 

  • Preusse M, Peeters F, Lorke A. 2010. Internal waves and the generation of turbulence in the thermocline of a large lake. Limnol Oceanogr 55:2353–65.

    Article  Google Scholar 

  • Proft G. 1984. Pelagic calcite precipitation and the carbon content of sediments from Pleistocene lakes. Acta Hydrochim Hydrobiol 12:321–6.

    Article  CAS  Google Scholar 

  • Reichstein M, Bahn M, Ciais P, Frank D, Mahecha MD, Seneviratne SI, Zscheischler J, Beer C, Buchmann N, Frank DC, Papale D, Rammig A, Smith P, Thonicke K, van der Velde M, Vicca S, Walz A, Wattenbach M. 2013. Climate extremes and the carbon cycle. Nature 500:287–95.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds CS, Oliver RL, Walsby AE. 1987. Cyanobacterial dominance: The role of buoyancy regulation in dynamic lake environments. NZ J Mar Freshw Res 21:379–90.

    Article  Google Scholar 

  • Richter D, Koschel R. 1985. Hydrometeorology of the Lake Stechlin area. In: Casper SJ, Ed. Lake Stechlin, a temperate oligotrophic lake. Dordrecht: Junk Publishers. p 41–86.

    Google Scholar 

  • Robertson D, Imberger J. 1994. Lake number, a quantitative indicator of mixing used to estimate changes in dissolved oxygen. Int Rev Gesamten Hydrobiol 79:159–76.

    Article  CAS  Google Scholar 

  • Robson BJ, Hamilton DP. 2003. Summer flow event induces a cyanobacterial bloom in a seasonal Western Australian estuary. Mar Freshw Res 54:139–51.

    Article  Google Scholar 

  • Rockel B, Woth K. 2007. Extremes of near-surface wind speed over Europe and their future changes as estimated from an ensemble of RCM simulations. Clim Change 81:267–80.

    Article  Google Scholar 

  • Samuelsson P. 2010. Using regional climate models to quantify the impact of climate change on lakes. In: George G, Ed. The impact of climate change on European Lakes. Dordrecht: Springer. p 15–32.

    Chapter  Google Scholar 

  • Saylor JH, Miller G, Hunkins K, Manley TO, Manley P. 1999. Gravity currents and internal bores in Lake Champlain. In: Manley TO, Manley PL, Eds. Lake Champlain in transition: from research toward restoration. Washington, D. C: American Geophysical Union. p 135–55.

    Chapter  Google Scholar 

  • Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E. 1993. Alternative equilibria in shallow lakes. Trends Ecol Evol 8:275–9.

    Article  CAS  PubMed  Google Scholar 

  • Scheffer M, Straile D, van Nes EH, Hosper H. 2001. Climatic warming causes regime shifts in lake food webs. Limnol Oceanogr 46:1780–3.

    Article  Google Scholar 

  • Scheffer M, Carpenter SR, Lenton TM. 2012. Anticipating critical transitions. Science 383:344–8.

    Article  Google Scholar 

  • Schindler DW. 2015. The dilemma of controlling cultural eutrophication of lakes. Proc R Soc B. doi:10.1098/rspb.2012.1032.

    Google Scholar 

  • Schmidt W. 1915. Über den Energiegehalt von Seen. Mit Beispielen vom Lunzer Untersee nach Messungen mit einem einfachen Temperaturlot. Internationale Revue der gesamten Hydrobiologie und Hydrographie 7:1–25.

    Google Scholar 

  • Smith VH. 1986. Light and nutrient effects on the relative biomass of blue–green algae in lake phytoplankton. Can J Fish Aquat Sci 43:148–53.

    Article  Google Scholar 

  • Spigel RH, Imberger J. 1980. The classification of mixed-layer dynamics on lakes of small and medium size. J Phys Oceanogr 10:1104–21.

    Article  Google Scholar 

  • Talling JF. 1993. Comparative seasonal changes, and inter-annual variability and stability, in a 26-year record of total phytoplankton biomass in four English lake basins. Hydrobiologia 268:65–98.

    Article  Google Scholar 

  • Üveges V, Tapolczai K, Krienitz L, Padisák J. 2012. Photosynthetic characteristics and physiological plasticity of an Aphanizomenon flos-aquae (Cyanobacteria, Nostocaceae) winter bloom in a deep oligo-mesotrophic lake (Lake Stechlin, Germany). Hydrobiologia 698:263–72.

    Article  Google Scholar 

  • Vachon D, del Giorgio PA. 2014. Whole-lake CO2 dynamics in response to storm events in two morphologically different lakes. Ecosystems 17:1338–53.

    Article  CAS  Google Scholar 

  • Wiedner C, Rücker J, Brüggemann R, Nixdorf B. 2007. Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions. Oecologia 152:473–84.

    Article  PubMed  Google Scholar 

  • Zimmermann U. 1969. Ökologische und physiologische Untersuchungen an der planktischen Blaualge Oscillatoria rubescens D.C. unter besonderer Berücksichtigung von Licht und Temperatur. Schweiz Z Hydrol 31:1–58.

    CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the excellent support by M. Lenz, U. Mallok, M. Papke, R. Roßberg, M. Sachtleben and the late R. Degebrodt during sample collection and analyses. The German Federal Environmental Agency and the German Meteorological Service kindly provided meteorological data. TS was supported by the Federal Ministry of Research and Education (Project KLIMZUG-INKABB) and GS by the Leibniz Association (Project TemBi). Thanks also go to R. Lathrop for constructive comments on an earlier draft of the manuscript. We are grateful to W. Mooij and three anonymous reviewers who helped to significantly improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kasprzak.

Ethics declarations

Conflict of interest

All authors declare that no conflicts of interest exist.

Additional information

Author Contributions

PK, TS, MOG and GK conceived the study, analysed data and wrote the paper with contributions from the other authors; TG, GS, JP and CE performed research and analysed data.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure 3

Thermal stratification and vertical profiles of water temperature in the south-west basin of Lake Stechlin (see Figure 1) before and after an exceptional storm in July 2011. The expansion of the mixed surface layer is indicated by dotted horizontal lines. (TIFF 59 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasprzak, P., Shatwell, T., Gessner, M.O. et al. Extreme Weather Event Triggers Cascade Towards Extreme Turbidity in a Clear-water Lake. Ecosystems 20, 1407–1420 (2017). https://doi.org/10.1007/s10021-017-0121-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-017-0121-4

Keywords

Navigation