Skip to main content
Log in

A Framework for Evaluating Heterogeneity and Landscape-Level Impacts of Non-native Aquatic Species

  • 20th Anniversary Paper
  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Non-native species are a major component of global environmental change, and aquatic systems are especially vulnerable to non-native species impacts. Much of the research on aquatic non-native species impact has occurred at the local or site level. In reality, non-native species impacts play out across multiple spatial scales on heterogeneous landscapes. How can we ‘scale up’ our understanding of site-level impacts to the broader landscape scale? To address this disconnect, we synthesize our current understanding of key components of landscape-scale non-native species impacts: geographic range, abundance, and local impacts. Most aquatic non-native species have small ranges, while a few have large ranges. However, aquatic non-native species are often far from saturated on landscapes, and occurrence records are often woefully incomplete. Aquatic non-native species are often at low abundances where they are present, reaching high abundance in a small number of locations. Finally, local-scale impact can be estimated from abundance, but this requires knowledge of the abundance–impact relationship. Considering these multiple components enables understanding of non-native species impacts at broader spatial scales. Although the landscape-level impacts of aquatic non-native species may be high, the spatial distribution of site-level impacts is uneven, and highly impacted sites may be relatively uncommon. This heterogeneity in impacts provides an opportunity to optimize and prioritize non-native species management and prevention efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Barney JN, Tekiela DR, Dollete ESJ, Tomasek BJ. 2013. What is the “real” impact of invasive plant species? Frontiers in Ecology and the Environment 11:322–9.

    Article  Google Scholar 

  • Benkwitt CE. 2015. Non-linear effects of invasive lionfish density on native coral-reef fish communities. Biological Invasions 17:1383–95.

    Article  Google Scholar 

  • Blackburn TM, Essl F, Evans T, Hulme PE, Jeschke JM, Kuhn I, Kumschick S, Markova Z, Mrugala A, Nentwig W, Pergl J, Pysek P, Rabitsch W, Ricciardi A, Richardson DM, Sendek A, Vila M, Wilson JRU, Winter M, Genovesi P, Bacher S. 2014. A unified classification of alien species based on the magnitude of their environmental impacts. PLoS ONE 12(5):e1001850.

    Article  Google Scholar 

  • Bobeldyk AM, Ruegg J, Lamberti GA. 2015. Freshwater hotspots of biological invasion are a function of species-pathway interactions. Hydrobiologia 746:363–73.

    Article  Google Scholar 

  • Bossenbroek JM, Kraft CE, Nekola JC. 2001. Prediction of long-distance dispersal using gravity models: Zebra mussel invasion of inland lakes. Ecological Applications 11:1778–88.

    Article  Google Scholar 

  • Boylen C, Eichler L, Madsen J. 1999. Loss of native aquatic plant species in a community dominated by Eurasian watermilfoil. Hydrobiologia 415:207–11.

    Article  Google Scholar 

  • Brown JH. 1995. Macroecology. Chicago, IL: The University of Chicago Press.

    Google Scholar 

  • Brown JH, Maurer BA. 1989. Macroecology—the Division of Food and Space among Species on Continents. Science 243:1145–50.

    Article  CAS  PubMed  Google Scholar 

  • Brown JH, Mehlman DW, Stevens GC. 1995. Spatial variation in abundance. Ecology 76:2028–43.

    Article  Google Scholar 

  • Bruno JF, Kennedy CW, Rand TA, Grant MB. 2004. Landscape-scale patterns of biological invasions in shoreline plant communities. Oikos 107:531–40.

    Article  Google Scholar 

  • Cox JG, Lima SL. 2006. Naivete and an aquatic-terrestrial dichotomy in the effects of introduced predators. Trends in Ecology & Evolution 21:674–80.

    Article  Google Scholar 

  • Crall AW, Meyerson LA, Stohlgren TJ, Jarnevich CS, Newman GJ, Graham J. 2006. Show me the numbers: what data currently exist for non-native species in the USA? Frontiers in Ecology and the Environment 4:414–18.

    Article  Google Scholar 

  • Crall AW, Newman GJ, Jarnevich CS, Stohlgren TJ, Waller DM, Graham J. 2010. Improving and integrating data on invasive species collected by citizen scientists. Biological Invasions 12:3419–28.

    Article  Google Scholar 

  • Crooks JA. 2005. Lag times and exotic species: The ecology and management of biological invasions in slow-motion. Ecoscience 12:316–29.

    Article  Google Scholar 

  • Crooks JA, Soule ME. 1999. Lag times in population explosions of invasive species: causes and implications. Sandlund OT, Schei PJ, Viken A editors. Invasive species and biodiversity management. Kluwer: Dordrecht.

  • Delaney DG, Leung B. 2010. An empirical probability model of detecting species at low densities. Ecological Applications 20:1162–72.

    Article  PubMed  Google Scholar 

  • Dick JTA, Gallagher K, Aviljas S, Clarke HC, Lewis SE, Leung S, Minchin D, Caffrey J, Alexander ME, Maguire C, Harrod C, Reid N, Haddaway NR, Farnsworth KD, Penk M, Ricciardi A. 2013. Ecological impacts of an invasive predator explained and predicted by comparative functional responses. Biological Invasions 15:837–46.

    Article  Google Scholar 

  • Dick JTA, Alexander ME, Jeschke JM, Ricciardi A, MacIsaac HJ, Robinson TB, Kumschick S, Weyl OLF, Dunn AM, Hatcher MJ, Paterson RA, Farnsworth KD, Richardson DM. 2014. Advancing impact prediction and hypotheses testing in invasion ecology using a comparative functional response approach. Biological Invasions 16:735–53.

    Article  Google Scholar 

  • Dickinson JL, Zuckerberg B, Bonter DN. 2010. Citizen science as an ecological research tool: challenges and benefits. Annual Review of Ecology, Evolution, and Systematics 41:149–72.

    Article  Google Scholar 

  • Dudgeon D, Arthington AH, Gessner MO, Kawabata Z, Knowler D, Lévêque C, Naiman RJ, Prieur-Richard A-H, Soto D, Stiassny MLJ, Sullivan CA. 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81:163–82.

    Article  PubMed  Google Scholar 

  • Elith J, Leathwick JR. 2009. Species distribution models: ecological explanations and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 40:677–97.

    Article  Google Scholar 

  • Engler R, Guisan A, Rechsteiner L. 2004. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. Journal of Applied Ecology 14:263–74.

    Article  Google Scholar 

  • Ficetola GF, Miaud C, Pompanon F, Taberlet P. 2008. Species detection using environmental DNA from water samples. Biology Letters 4:423–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuller PF, Benson AJ. 2009. Nonindigenous aquatic species database. Gainesville, Florida http://nas.er.usgs.gov/queries/FactSheet.asp?speciesID=2265 Accessed 6/30/2010. United States Geological Survey.

  • Gaeta JW, Beardmore B, Latzka AW, Provencher B, Carpenter SR. 2013. Catch-and-release rates of sport fishes in northern Wisconsin. North American Journal of Fisheries Management 33:606–14.

    Article  Google Scholar 

  • Gallo T, Waitt D. 2011. Creating a successful citizen science model to detect and report invasive species. Bioscience 61:459–65.

    Article  Google Scholar 

  • Gaston KJ. 1996. Species-range-size distributions: Patterns, mechanisms, and implications. Trends in Ecology & Evolution 11:197–201.

    Article  CAS  Google Scholar 

  • Gaston KJ. 2003. The structure and dynamics of geographic ranges. Oxford: Oxford University Press.

    Google Scholar 

  • Gaston KJ, Blackburn TM. 2000. Pattern and process in macroecology. Malden, MA: Blackwell Publishing.

    Book  Google Scholar 

  • Gido KB, Brown JH. 1999. Invasion of North American drainages by alien fish species. Freshwater Biology 42:387–99.

    Article  Google Scholar 

  • Graham J, Newman G, Jarnevich CS, Shory R, Stohlgren TJ. 2007. A global organism detection and monitoring system for non-native species. Ecological Informatics 2:177–83.

    Article  Google Scholar 

  • Guisan A, Thuiller W. 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters 8:993–1009.

    Article  Google Scholar 

  • Guo QF, Olden JD. 2014. Spatial Scaling of Non-Native Fish Richness across the United States. PLoS ONE 9(5):e97727.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen GJA, Hein CL, Roth BM, Vander Zanden MJ, Gaeta JW, Latzka AW, Carpenter SR. 2013a. Food web consequences of long-term invasive crayfish control. Canadian Journal of Fisheries and Aquatic Sciences 70:1109–22.

    Article  Google Scholar 

  • Hansen GJA, Ives AR, Vander Zanden MJ, Carpenter SR. 2013b. Are rapid transitions between invasive and native species caused by alternative stable states, and does it matter? Ecology 94:2207–19.

    Article  PubMed  Google Scholar 

  • Hansen GJA, Vander Zanden MJ, Blum MJ, Clayton MK, Hain EF, Hauxwell J, Izzo M, Kornis MS, McIntyre PB, Mikulyuk A, Nilsson E, Olden JD, Papes M, Sharma S. 2013c. Commonly Rare and Rarely Common: Comparing Population Abundance of Invasive and Native Aquatic Species. PLoS ONE 8(10):e77415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey CT, Qureshi SA, MacIsaac HJ. 2009. Detection of a colonizing, aquatic, non-indigenous species. Diversity and Distributions 15:429–37.

    Article  Google Scholar 

  • Higgins SN, Vander Zanden MJ. 2010. What a difference a species makes: a meta-analysis of dreissenid mussel impacts on freshwater ecosystems. Ecological Monographs 80:179–96.

    Article  Google Scholar 

  • Jackson MC, Ruiz-Navarro A, Britton JR. 2015. Population density modifies the ecological impacts of invasive species. Oikos 124:880–7.

    Article  Google Scholar 

  • Jelks HL, Walsh SJ, Burkhead NM, Contreras-Balderas S, Diaz-Pardo E, Hendrickson DA, Lyons J, Mandrak NE, McCormick F, Nelson JS, Platania SP, Porter BA, Renaud CB, Schmitter-Soto JJ, Taylor EB, Warren ML. 2008. Conservation Status of Imperiled North American Freshwater and Diadromous Fishes. Fisheries 33:372–407.

    Article  Google Scholar 

  • Jerde CL, Mahon AR, Chadderton WL, Lodge DM. 2011. “Sight-unseen” detection of rare aquatic species using environmental DNA. Conservation Letters 4:150–7.

    Article  Google Scholar 

  • Jeschke JM, Bacher S, Blackburn TM, Dick JTA, Essl F, Evans T, Gaertner M, Hulme PE, Kuhn I, Mrugala A, Pergl J, Pysek P, Rabitsch W, Ricciardi A, Richardson DM, Sendek A, Vila M, Winter M, Kumschick S. 2015. Defining the impact of non-native species. Conservation Biology 28:1188–94.

    Article  Google Scholar 

  • Johnson LE, Ricciardi A, Carlton JT. 2001. Overland dispersal of aquatic invasive species: A risk assessment of transient recreational boating. Ecological Applications 11:1789–99.

    Article  Google Scholar 

  • Kelly NE, Wantola K, Weisz E, Yan ND. 2013. Recreational boats as a vector of secondary spread for aquatic invasive species and native crustacean zooplankton. Biological Invasions 15:509–19.

    Article  Google Scholar 

  • Kolar CS, Lodge DM. 2002. Ecological predictions and risk assessment for alien fishes in North America. Science 298:1233–6.

    Article  CAS  PubMed  Google Scholar 

  • Kornis MS, Carlson J, Lehrer-Brey G, Vander Zanden MJ. 2014. Experimental evidence that impacts of an invasive fish are reduced at high densities. Oecologia 175:325–34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kulhanek SA, Leung B, Ricciardi A. 2011a. Using ecological niche models to predict the abundance and impact of invasive species: application to the common carp. Ecological Applications 21:203–13.

    Article  PubMed  Google Scholar 

  • Kulhanek SA, Ricciardi A, Leung B. 2011b. Is invasion history a useful tool for predicting the impacts of the world’s worst aquatic invasive species? Ecological Applications 21:189–202.

    Article  PubMed  Google Scholar 

  • Kumschick S, Richardson DM. 2013. Species-based risk assessments for biological invasions: Advances and challenges. Diversity and Distributions 19:1095–105.

    Article  Google Scholar 

  • Kumschick S, Gaertner M, Vila M, Essl F, Jeschke JM, Pysek P, Ricciardi A, Bacher S, Blackburn TM, Dick JTA, Evans T, Hulme PE, Kuhn I, Mrugala A, Pergl J, Rabitsch W, Richardson DM, Sendek A, Winter M. 2015. Ecological Impacts of Alien Species: Quantification, Scope, Caveats, and Recommendations. Bioscience 65:55–63.

    Article  Google Scholar 

  • Kunin WE. 1998. Extrapolating species abundance across spatial scales. Science 281:1513–15.

    Article  CAS  PubMed  Google Scholar 

  • Latzka AW. 2015. Landscape-scale patterns in aquatic invasions: Prevalence, colonization, establishment, and impacts. University of Wisconsin—Madison.

  • Latzka AW, Hansen GJA, Kornis M, Vander Zanden MJ. 2016. Spatial heterogeneity in invasive species impact at the landscape scale. Ecosphere 7: e01311. 01310.01002/ecs01312.01311.

  • Leprieur F, Beauchard O, Blanchet S, Oberdorff T, Brosse S. 2008. Fish invasions in the world’s river systems: when natural processes are blurred by human activities. Plos Biology 6:404–10.

    CAS  Google Scholar 

  • Leung B, Mandrak NE. 2007. The risk of establishment of aquatic invasive species: joining invasibility and propagule pressure. Proc. Roy. Soc. B 274:2603–9.

    Article  Google Scholar 

  • Lockwood JL, Hoopes MF, Marchetti MP. 2013. Invasion ecology. 2nd edn. Oxford, United Kingdom: Wiley-Blackwell Publishing. p 444p.

    Google Scholar 

  • Lodge DM, Shrader-Frechette K. 2003. Nonindigenous species: Ecological explanation, environmental ethics, and public policy. Conservation Biology 17:31–7.

    Article  Google Scholar 

  • Lodge DM, Stein RA, Brown KM, Covich AP, Bronmark C, Garvey JE, Klosiewski SP. 1998. Predicting impact of freshwater exotic species on native biodiversity: Challenges in spatial scaling. Australian Journal of Ecology 23:53–67.

    Article  Google Scholar 

  • MacIsaac HJ, Ketelaars HAM, Grigorovich IA, Ramcharan CW, Yan ND. 2000. Modeling Bythotrephes longimanus invasion in the Great Lakes basin based on its European distribution. Archiv fur Hydrobiologie 149:1–21.

    Article  Google Scholar 

  • MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA. 2002. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–55.

    Article  Google Scholar 

  • Magurran AE. 2004. Measuring biological diversity. Malden, MA: Blackwell Publishing.

    Google Scholar 

  • Matsuzaki SS, Usio N, Takamura N, Washitani I. 2009. Contrasting impacts of invasive engineers on freshwater ecosystems: an experiment and meta-analysis. Oecologia 158:673–86.

    Article  PubMed  Google Scholar 

  • Mercado-Silva N, Olden JD, Maxted JT, Hrabik TR, Vander Zanden MJ. 2006. Forecasting the spread of invasive rainbow smelt in the Laurentian Great Lakes region of North America. Conservation Biology 20:1740–9.

    Article  PubMed  Google Scholar 

  • Moorhouse TP, Macdonald DW. 2015. Are invasives worse in freshwater than terrestrial ecosystems? Wiley Interdisciplinary Reviews-Water 2:1–8.

    Article  Google Scholar 

  • Naddafi R, Blenckner T, Eklov P, Pettersson K. 2011. Physical and chemical properties determine zebra mussel invasion success in lakes. Hydrobiologia 699:227–36.

    Article  Google Scholar 

  • Olenin S, Narščius A, Minchin D, David M, Galil B, Gollasch S, Marchini A, Occhipinti-Ambrogi A, Ojaveer H, Zaiko A. 2014. Making non-indigenous species information systems practical for management and useful for research: An aquatic perspective. Biological Conservation 173:98–107.

    Article  Google Scholar 

  • Papeş M, Gaubert P. 2007. Modelling ecological niches from low numbers of occurrences: assessment of the conservation status of poorly known viverrids (Mammalia, Carnivora) across two continents. Diversity and Distributions 13:890–902.

    Article  Google Scholar 

  • Parker IM, Simberloff D, Lonsdale WM, Goodell K, Wonham W, Kareiva PM, Williamson MH, Von Holle B, Moyle PB, Byers JE, Goldwasser L. 1999. Impact: Towards a framework for understanding the ecological effects of invaders. Biological Invasions 1:3–19.

    Article  Google Scholar 

  • Pejchar L, Mooney HA. 2009. Invasive species, ecosystem services and human well-being. Trends in Ecology & Evolution 24:497–504.

    Article  Google Scholar 

  • Peterson AT, Papeş M, Soberón J. 2015. Mechanistic and Correlative Models of Ecological Niches. European Journal of Ecology 1:28–38.

    Article  Google Scholar 

  • Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S. 2009. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications 19:181–97.

    Article  PubMed  Google Scholar 

  • Pimentel D, Lach L, Zuniga R, Morrison D. 2000. Environmental and economic costs of nonindigenous species in the United States. Bioscience 50:53–64.

    Article  Google Scholar 

  • Pysek P, Hulme PE. 2009. Invasion biology is a discipline that’s too young to die. Nature 460:324.

    Article  CAS  PubMed  Google Scholar 

  • Rahel FJ. 2000. Homogenization of fish faunas across the United States. Science 288:854–6.

    Article  CAS  PubMed  Google Scholar 

  • Ramcharan CW, Padilla DK, Dodson SI. 1992. Models to predict potential occurrence and density of zebra mussel, Dreissena polymorpha. Canadian Journal of Fisheries and Aquatic Sciences 49:2611–20.

    Article  Google Scholar 

  • Ricciardi A. 2003. Predicting the impacts of an introduced species from its invasion history: an empirical approach applied to zebra mussel invasions. Freshwater Biology 48:972–81.

    Article  Google Scholar 

  • Ricciardi A, Palmer ME, Yan ND. 2011. Should biological invasions be managed as natural disasters? Bioscience 61:312–17.

    Article  Google Scholar 

  • Ricciardi A, Hoopes MF, Marchetti MP, Lockwood JL. 2013. Progress towards understanding the ecological impacts of nonnative species. Ecological Monographs 83:263–82.

    Article  Google Scholar 

  • Roth BM, Tetzlaff JC, Alexander ML, Kitchell JF. 2007. Reciprocal relationships between exotic rusty crayfish, macrophytes, and Lepomis species in northern Wisconsin lakes. Ecosystems 10:74–85.

    Article  Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker IM, Thompson JN, Weller SG. 2001. The population biology of invasive species. Annual Review of Ecology and Systematics 32:305–32.

    Article  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH. 2000. Biodiversity: Global biodiversity scenarios for the year 2100. Science 287:1770–4.

    Article  CAS  PubMed  Google Scholar 

  • Schade CB, Bonar SA. 2005. Distribution and abundance of nonnative fishes in streams of the Western United States. North American Journal of Fisheries Management 25:1386–94.

    Article  Google Scholar 

  • Scheffer M. 1998. Ecology of shallow lakes. London: Chapman and Hall. p 357p.

    Google Scholar 

  • Scheffer M, Carpenter SR. 2003. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecology & Evolution 18:648–56.

    Article  Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker B. 2001. Catastrophic shifts in ecosystems. Nature 413:591–6.

    Article  CAS  PubMed  Google Scholar 

  • Simpson A, Jarnevich CS, Madsen J, Westbrooks R, Fournier C, Mehrhoff L, Browne M, Graham J, Sellers E. 2009. Invasive species information networks: collaboration at multiple scales for prevention, early detection, and rapid response to invasive alien species. Biodiversity 10:5–13.

    Article  Google Scholar 

  • Strayer DL. 2010. Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshwater Biology 55:152–74.

    Article  Google Scholar 

  • Strayer DL. 2012. Eight questions about invasions and ecosystem functioning. Ecology Letters 15:1199–210.

    Article  PubMed  Google Scholar 

  • Strayer DL, Dudgeon D. 2010. Freshwater biodiversity conservation: recent progress and future challenges. Journal of the North American Benthological Society 29:344–58.

    Article  Google Scholar 

  • Thiele J, Kollmann J, Markussen B, Otte A. 2010. Impact assessment revisited: improving the theoretical basis for management of invasive alien species. Biological Invasions 12:2025–35.

    Article  Google Scholar 

  • Thomsen MS, Olden JD, Wernberg T, Griffin JN, Silliman BR. 2011. A broad framework to organize and compare ecological invasion impacts. Environmental Research 111:899–908.

    Article  CAS  PubMed  Google Scholar 

  • Vander Zanden MJ, Olden JD. 2008. A management framework for preventing the secondary spread of aquatic invasive species. Can. J. Fish. Aquat. Sci. 65:1512–22.

    Article  Google Scholar 

  • Vander Zanden MJ, Olden JD, Thorne JH, Mandrak NE. 2004. Predicting occurrences and impacts of bass introductions in north temperate lakes. Ecological Applications 14:132–48.

    Article  Google Scholar 

  • Vander Zanden MJ, Lapointe NWR, Marchetti MP. 2015. Non-indigenous fishes and their role in freshwater fish imperilment. Closs GP, Krkosek M, Olden JD editors. Conservation of Freshwater Fishes. Cambridge: Cambridge University Press, p238–269.

  • Vanderploeg HA, Nalepa TF, Jude DJ, Mills EL, Holeck KT, Liebig JR, Grigorovich IA, Ojaveer H. 2002. Dispersal and emerging ecological impacts of Ponto-Caspian species in the Laurentian Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences 59:1209–28.

    Article  Google Scholar 

  • Walsh JR, Carpenter SR, Vander Zanden MJ. 2016. Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proceedings of the National Academy of Sciences of the United States of America 113:4081–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wetzel RG. 2001. Limnology: lake and river ecosystems. Fort Worth: Saunders College Publishing.

    Google Scholar 

  • Wilson KA. 2002. Impacts of the invasive rusty crayfish (Orconectes rusticus) in northern Wisconsin lakes. University of Wisconsin-Madison.

  • Wilson AE, Sarnelle O. 2002. Relationship between zebra mussel biomass and total phosphorus in European and North American lakes. Archiv fur Hydrobiologie 153:339–51.

    Article  CAS  Google Scholar 

  • Wilson KA, Magnuson JJ, Lodge DM, Hill AM, Kratz TK, Perry WL, Willis TV. 2004. A long-term rusty crayfish (Orconectes rusticus) invasion: dispersal patterns and community change in a north temperate lake. Canadian Journal of Fisheries and Aquatic Sciences 61:2255–66.

    Article  Google Scholar 

  • Yokomizo H, Possingham HP, Thomas MB, Buckley YM. 2009. Managing the impact of invasive species: the value of knowing the density-impact curve. Ecological Applications 19:376–86.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to the colleagues who have contributed to the research and ideas presented herein: Matt Kornis, Alison Mikulyuk, Jake Walsh, Mona Papes, Sapna Sharma, Julian Olden, and Tony Ricciardi. Alison Mikulyuk provided maps. Special thanks to colleagues at the Wisconsin Department of Natural Resources: Scott Van Egeren, Bob Wakeman, Maureen Ferry, and Tim Asplund. This work was supported by the Wisconsin Department of Natural Resources and the National Science Foundation (#CNH-0909281 and #DEB-1440297, NTL-LTER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jake Vander Zanden.

Additional information

Authors’ contributions

JVZ conceived of the study, and JVZ, GJAH, and AWL all performed research, analyzed data, and wrote the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vander Zanden, M.J., Hansen, G.J.A. & Latzka, A.W. A Framework for Evaluating Heterogeneity and Landscape-Level Impacts of Non-native Aquatic Species. Ecosystems 20, 477–491 (2017). https://doi.org/10.1007/s10021-016-0102-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-016-0102-z

Keywords

Navigation