Skip to main content
Log in

Forest Age Influences In-stream Ecosystem Processes in Northeastern US

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

A disturbance or natural event in forested streams that alter available light can have potential consequences for nutrient dynamics and primary producers in streams. In this study, we address how functional processes (primary production and nutrient uptake) in stream ecosystems respond to changes in forest canopy structure. We focus on differences in incoming irradiance, nutrient uptake (NO3, NH4, and PO4) and open-channel metabolism seasonally in 13 forested streams that drain forests with different canopy structures (10 to >300 years old) in the northeastern United States. Light irradiance was related to forest age in a U-shaped pattern, with light being the greatest in both young open forests (<50 years old) and older growth forests (>245 years old), whereas the darkest conditions were found in the secondary growth middle-aged forests (80–158 years old). Streams that had adjacent open or old-growth riparian forest had similar conditions with greater standing stock biofilm biomass (chl a), and elevated ER in October compared to streams with middle-aged riparian forests. Compared to all sites, streams with old-growth riparian forest had the greatest in-stream primary production rates (GPP) and elevated background nutrient concentrations, and to a lesser degree, increased nutrient retention and uptake (V f). Streams draining older forests tended to be more productive and retentive than middle-aged forests, likely due to increased light availability and the age and structure of surrounding forest canopies. Middle-aged forests had the least variation in response variables compared to streams in young and old-growth riparian forests, likely a result of uniform canopy conditions. As the structure of widespread middle-aged forests in NE US is altered by loss of specific tree species, climate change, and/or human activity, it will impact in-stream production and nutrient dynamics and may ultimately alter nutrient loading in downstream catchments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Albani M, Moorcroft PR, Ellison AM, Orwig DA, Foster DR. 2011. Predicting the impact of hemlock woolly adelgid on carbon dynamics of eastern United States forests. Can J For Res 40:119–33.

    Article  Google Scholar 

  • Alexander RB, Smith RA, Schwarz GE. 2000. Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. Nature 403:758–61.

    Article  CAS  PubMed  Google Scholar 

  • Aumen NG, Hawkins CP, Gregory SV. 1990. Influence of woody debris on nutrient retention in catastrophically disturbed streams. Hydrobiologia 190:183–92.

    Article  CAS  Google Scholar 

  • Bechtold HA, Marcarelli AM, Baxter CV, Inouye RS. 2012a. Effects of N, P, and organic carbon on stream biofilm nutrient limitation and uptake in a semi-arid watershed. Limnol Oceanogr 57:1544–54.

    Article  CAS  Google Scholar 

  • Bechtold H, Rosi-Marshall E, Warren D, Cole J. 2012b. A practical method for measuring integrated solar radiation reaching streambeds using photodegrading dyes. Freshw Sci 31:1070–7. doi:10.1899/12-003.1.

    Article  Google Scholar 

  • Bernal S, Hedin LO, Likens GE, Gerber S, Buso DC. 2012. Complex response of the forest nitrogen cycle to climate change. Proc Natl Acad Sci USA 109:3406–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernhardt ES, Likens GE, Buso DC, Driscoll CT. 2003. In-stream uptake dampens effects of major forest disturbance on watershed nitrogen export. Proc Natl Acad Sci USA 100:10304–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernot MJ, Dodds WK. 2005. Nitrogen retention, removal and saturation in lotic ecosystems. Ecosystems 8:442–53.

    Article  CAS  Google Scholar 

  • Bernot MJ, Sobota DJ, Hall RO, Mulholland PJ, Dodds WK, Webster JR, Tank JL, Ashkenas LR, Cooper LW, Dahm CN, Gregory SV, Grimm NB, Hamilton SK, Johnson SL, Mcdowell WH, Meyer JL, Peterson B, Poole GC, Valett HM, Arango C, Beaulieu JJ, Burgin AJ, Crenshaw C, Helton AM, Johnson L, Niederlehner BR, O’Brien JM, Potter JD, Sheibley RW, Thomas SM, Wilson K. 2010. Inter-regional comparison of land-use effects on stream metabolism. Freshw Biol 55:1874–90.

    Article  Google Scholar 

  • Bott TL. 1996. Primary productivity and community respiration. In: Hauer FR, Lamberti GA, Eds. Methods in stream ecology. 1st edn. San Diego (CA): Academic Press. p 533–56.

    Google Scholar 

  • Bott TL, Newbold JD, Arscott DB. 2006a. Ecosystem metabolism in piedmont streams: reach geomorphology modulates the influence of riparian vegetation. Ecosystems 9(3):398–421.

    Article  Google Scholar 

  • Bott TL, Montgomery DS, Newbold JD, Arscott DB, Dow CL, Aufdenkampe AK, Jackson JK, Kaplan LA. 2006b. Ecosystem metabolism in stream so the Catskill Mountains (Delaware and Hudson River watersheds) and lower Hudson valley. J North Am Benthol Soc 25(4):1018–44.

    Article  Google Scholar 

  • Burrows RD, Magierowski RH, Fellman JB, Barmuta LA. 2012. Woody debris input and function in old-growth and clear-felled headwater streams. For Ecol Manag 286:73–80.

    Article  Google Scholar 

  • Canham CD, Denslow JS, Platt WJ, Runkle JR, Spies TA, White PS. 1990. Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests. Can J For Res 20(5):620–31.

    Article  Google Scholar 

  • Clapcott JE, Barmuta LA. 2010. Forest clearance increases metabolism and organic matter processes in small headwater streams. J N. Am Benthol Soc 29:546–61.

    Article  Google Scholar 

  • Collins SM, Sparks JP, Thomas SA, Wheatley SA, Flecker AS. 2016. Increased light availability reduces the importance of bacterial carbon in headwater stream food webs. Ecosystems 19(3):396–410.

    Article  CAS  Google Scholar 

  • Cordova JM, Rosi-Marshall EH, Yamamuro M, Lamberti GA. 2007. Quantity, controls and functions of large woody debris in Midwestern USA streams. River Res Appl 23:21–33.

    Article  Google Scholar 

  • Curzon MT, Keeton WS. 2010. Spatial characteristics of canopy disturbances in riparian old-growth hemlock-northern hardwood forests, Adirondack Mountains, New York, USA. Can J For Res 40:67–80.

    Article  Google Scholar 

  • Danger M, Cornut J, Chauvet E, Chavez P, Elger A, Lecerf A. 2013. Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect? Ecology 94:1604–1613. doi:10.1890/12-0606.1.

    Article  PubMed  Google Scholar 

  • Denicola DM, Hoagland KD, Roemer SC. 1992. Influences of canopy cover on spectral irradiance and periphyton assemblages in a prairie stream. J N. Am Benthol Soc 11:391–404.

    Article  Google Scholar 

  • Dickman EM, Vanni MJ, Horgan MJ. 2006. Interactive effects of light and nutrients on phytoplankton stoichiometry. Oecologia 149:676–89.

    Article  PubMed  Google Scholar 

  • Duveneck MJ, Thompson JR, Gustafson EJ, Liang Y, de Bruijn AMG. 2016. Recovery dynamics and climate change effects to future New England forests. Landsc Ecol . doi:10.1007/s10980-016-0415-5.

    Google Scholar 

  • Fausch KD, Northcote TG. 2011. Large woody debris and salmonid habitat in a small coastal British Columbia stream. Can J Fish Aquat Sci 49(4):682–93.

    Article  Google Scholar 

  • Fellows CS, Clapcott CE, Udy JW, Bunn SE, Harch BD, Smith MJ, Davies PM. 2006. Benthic metabolism as an indicator of stream ecosystem health. Hydrobiologia 572:71–87.

    Article  Google Scholar 

  • Fisher SG, Likens GE. 1973. Energy flow in bear brook, New Hampshire—integrative approach to stream ecosystem metabolism. Ecol Monogr 43(4):421–39.

    Article  Google Scholar 

  • Fisichelli NA, Abella SR, Peters M, Krist FJ Jr. 2014. Climate, trees, pests and weeds: change, uncertainty and biotic stressors in eastern U.S. national park forests. For Ecol Manag 327:3–39.

    Article  Google Scholar 

  • Franklin JF, Spies TA, Van Pelt R, Carey AB, Thornburgh DA, Rae Berg D, Lindenmayer DB, Harmon ME, Keeton WS, Shaw DC, Bible K, Chen J. 2002. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forest as an example. For Ecol Manag 155:399–423.

    Article  Google Scholar 

  • Franklin JF, Van Pelt R. 2004. Spatial aspects of structural complexity in old-growth forests. J For 102:22–8.

    Google Scholar 

  • Grace M, Giling D, Hladyz S, MacNally R. 2015. Fast processing of diel oxygen curves: estimating stream metabolism with BASE (Bayesian Single-station Estimation). Limnol Oceanogr Methods 13(3):103–14.

    Article  CAS  Google Scholar 

  • Gray SM, Ellis PS, Grace MR, McKelvie ID. 2006. Spectrophotometric determination of ammonia in estuarine waters by hybrid reagent-injection gas-diffusion flow analysis. Spectrosc Lett 39:737–53.

    Article  CAS  Google Scholar 

  • Greenwood JL, Rosemond AD. 2005. Periphyton response to long-term nutrient enrichment in a shaded headwater stream. Can J Fish Aquat Sci 62:2033–45.

    Article  CAS  Google Scholar 

  • Grimm NB, Chapin FSIII, Bierwagen B, Gonzalez P, Groffman PM, Luo Y, Melton F, Nadelhoffer K, Pairis A, Raymond P, Schimel J, Williamson CE. 2013. The impacts of climate change on ecosystem structure and function. Fron Ecol Environ 119(9):474–82.

    Article  Google Scholar 

  • Hanafi S, Grace MR, Webb JA, Hart BT. 2007. Uncertainty in nutrient spiraling: sensitivity of spiraling indices to small errors in measured nutrient concentration. Ecosystems 10:477–87.

    Article  CAS  Google Scholar 

  • Hall RO, Baker MA, Rosi-Marshall EJ, Tank JL, Newbold JD. 2013. Solute specific scaling of inorganic nitrogen and phosphorus uptake in streams. Biogeosciences 10:7323–31. doi:10.5194/bg-10-7323-2013.

    Article  CAS  Google Scholar 

  • Hall RO Jr, Tank JL. 2003. Ecosystem metabolism controls nitrogen uptake in streams in Grand Teton National Park, Wyoming. Limnol Oceanogr 48:1120–8.

    Article  CAS  Google Scholar 

  • Hanson JJ, Lorimer CG. 2007. Forest structure and light regimes following moderate wind storms; implications for multi-cohort management. Ecol Appl 17(5):1325–40.

    Article  PubMed  Google Scholar 

  • Hedin LO, Armesto JJ, Johnson AH. 1995. Patterns of nutrient loss from unpolluted, old-growth temperate forests: evaluation of biogeochemical theory. Ecology 76:493–509.

    Article  Google Scholar 

  • Hill WR, Dimick SM. 2002. Effects of riparian leaf dynamics on periphyton photosynthesis and light utilization efficiency. Freshw Biol 47:1245–56.

    Article  CAS  Google Scholar 

  • Hill WR, Mulholland PJ, Marzolf ER. 2001. Stream ecosystem responses to forest leaf emergence in spring. Ecology 82:2306–19.

    Article  Google Scholar 

  • Hill WR, Ryon MG, Schilling EM. 1995. Light limitation in a stream ecosystem: responses by primary producers and consumers. Ecology 76:1297–309.

    Article  Google Scholar 

  • Jenkins JC, Aber JD, Canham CD. 1999. Hemlock woolly adelgid impacts on community structure and N cycling rates in eastern hemlock forests. Can J For Res 29:630–45. doi:10.1139/cjfr-29-5-630.

    Article  Google Scholar 

  • Julian JP, Seegert SZ, Powers SM, Stanley EH, Doyle MW. 2011. Light as a first-order control on ecosystem structure in a temperate stream. Ecohydrology 4:422–32.

    Article  Google Scholar 

  • Keeton WS, Kraft CE, Warren DR. 2007. Mature and old-growth riparian forests: structure, dynamics, and effects on Adirondack stream habitats. Ecol Appl 17:852–68.

    Article  PubMed  Google Scholar 

  • Kiffney PM, Buhle ER, Naman SM, Pess GR, Klett RS. 2014. Linking resource availability and habitat structure to stream organisms: an experimental and observational assessment. Ecosphere 5:39.

    Article  Google Scholar 

  • Kohler TJ, Heatherly TN, El-Sabaawi RW, Zandona E, Marchal MC, Flecker AS, Pringle CM, Reznick DN, Thomas SA. 2012. Flow, nutrients and light availability influence Neotropical epilithon biomass and stoichiometry. Freshw Sci 31(4):1019–34.

    Article  Google Scholar 

  • Krause S, Klaar MJ, Hannah DM, Mant J, Bridgeman J, Trimmer M, Manning-Jones S. 2014. The potential of large woody debris to alter biogeochemical processes and ecosystem services in lowland rivers. Wiley Interdiscip Rev 1(3):263–75.

    Article  CAS  Google Scholar 

  • Matheson FE, Quinn JM, Martin ML. 2012. Effects of irradiance on diel and seasonal patterns of nutrient uptake by stream periphyton. Freshw Biol 57:1617–30.

    Article  CAS  Google Scholar 

  • Mulholland PJ, Thomas SA, Valett HM, Webster JR, Beaulieu J. 2006. Effects of light on NO3 uptake in small forested streams: diurnal and day-to-day variations. J N. Am Benthol Soc 25:583–95.

    Article  Google Scholar 

  • Mulholland PJ, Fellows CS, Tank JL, Grimm NB, Webster JR, Hamilton SK, Marti E, Askenas L, Bowden WB, Dodds WK, McDowell WH, Paul JM, Peterson BJ. 2001. Inter-biome comparison of factors controlling stream metabolism. Freshw Biol 46:1503–17.

    Article  CAS  Google Scholar 

  • Mosisch TD, Bunn SE, Davies PM. 2001. The relative importance of shading and nutrients on algal production in subtropical streams. Freshw Biol 46:1269–78. doi:10.1046/j.1365-2427.2001.00747.x.

    Article  Google Scholar 

  • Pan YM, Chen JM, Birdsey R, McCullough K, He L, Deng F. 2011. Age, structure and disturbance legacy of North American Forests. Biogeosciences 8:715–32.

    Article  Google Scholar 

  • Quinn JM, Cooper AB, Stroud MJ, Burrell GP. 1997. Shade effects on stream periphyton and invertebrates: an experiment in streamside channels. N. Z. J Mar Freshw Res 31:665–83.

    Article  Google Scholar 

  • Rasband WS. (1997). ImageJ. U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997–2014

  • Ribot M, Von Shiller D, Peipoch M, Sabater F, Grimm NB, Marti E. 2013. Influence of nitrate and ammonium availability on uptake kinetics of stream biofilms. Freshw Sci 32(4):1155–67.

    Article  Google Scholar 

  • Reilly MJ, Spies TA. 2015. Regional variation in stand structure and development in forest of Oregon, Washington, and inland Northern California. Ecosphere 6(10):1–27.

    Article  Google Scholar 

  • Richardson K, Beardall J, Raven JA. 1983. Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phytol 93:157–91.

    Article  Google Scholar 

  • Rosemond AD. 1993. Interactions among irradiance, nutrients, and herbivores constrain a stream algal community. Oecologia 94:585–94.

    Article  CAS  PubMed  Google Scholar 

  • Sabater F, Butturini A, Marti E, Munoz I, Romani A, Wray J, Sabater S. 2000. Effects of riparian vegetation removal on nutrient retention in a Mediterranean stream. J N. Am Benthol Soc 19(4):609–20.

    Article  Google Scholar 

  • Steinman AD. 1992. Does an increase in irradiance influence periphyton in a heavily-grazed woodland stream. Oecologia 91:163–70.

    Article  PubMed  Google Scholar 

  • Stovall J, Keeton WS, Kraft CE. 2009. Late-successional riparian forest structure results in heterogeneous periphyton distributions in low-order streams. Can J For Res 29:2343–54.

    Article  Google Scholar 

  • Stream Solute Workshop. 1990. Solute dynamics in streams. J N. Am Benthol Soc 9:95–119.

    Article  Google Scholar 

  • Tank JL, Rosi-Marshall EJ, Griffiths NA, Entrekin SA, Stephen ML. 2010. A review of allochthonous organic matter dynamics and metabolism in streams. J N. Am Benthol Soc 29:118–46.

    Article  Google Scholar 

  • Tank JL, Bernot MJ, Rosi-Marshall EJ. 2006. Nitrogen limitation and uptake. In: Hauer FR, Lamberti GA, Eds. Stream ecology methods. San Diego (CA): Elsevier Press. p 213–38.

    Google Scholar 

  • Valett HM, Crenshaw CL, Wagner PF. 2002. Stream nutrient uptake, forest succession, and biogeochemical theory. Ecology 83:2888–901.

    Article  Google Scholar 

  • Vitousek PA, Reiners WA. 1975. Ecosystem succession and nutrient retention: a hypothesis. BioScience 25:376–81.

    Article  CAS  Google Scholar 

  • Warren DR, Bernhardt ES, Hall RO, Likens GE. 2007. Forest age, wood, and nutrient dynamics in headwater streams of the Hubbard Brook Experimental Forest, NH. Earth Surf Proc Landf 32:1154–63.

    Article  CAS  Google Scholar 

  • Warren DR, Kraft CE, Keeton WS, Nunery JS, Likens GE. 2009. Dynamics of wood recruitment in stream of the northeastern US. Forest Ecol Manag 258:804–13.

    Article  Google Scholar 

  • Warren DR, Keeton WS, Bechtold HA, Rosi-Marshall EJ. 2013. Comparing streambed light availability and canopy cover in streams with old-growth versus early-mature riparian forests western Oregon. Aquat Sci 75:547–58.

    Article  Google Scholar 

  • Warren DR, Collins SM, Purvis EM, Kaylor MJ, Bechtold HA. 2016a. Spatial variability in light yields colimitation of primary production by both light and nutrients in a forested stream ecosystem. Ecosystems. doi:10.1007/s10021-016-0024-9.

  • Warren DR, Keeton WS, Kiffney PM, Kaylor MJ, Bechtold HA, Magee J. 2016b. Changing forests—changing streams: riparian forest stand development and ecosystem function in temperate headwaters. Ecosphere 7(8):e01435. doi:10.1002/ecs2.1435.

  • Webster JR, Valett HM. 2006. Solute dynamics. In: Hauer FR, Lamberti GA, Eds. Methods in stream ecology. 2nd edn. San Diego: Academic Press. p 169–85.

    Google Scholar 

  • Wetzel RG. 1964. A comparative study of the primary production of higher aquatic plants, periphyton, and phytoplankton in a large, shallow lake. Internationale Revue der gesamten Hydrobiologie und Hydrographie 49:1522–2632.

    Article  Google Scholar 

  • Woliheim WM, Vorosmarty CJ, Peterson BJ, Seitxinger SP, Hopkinson CS. 2006. Relationship between river size and nutrient removal. Geophys Res Lett 33:L06410. doi:10.1029/2006GL025845.

    Google Scholar 

Download references

Acknowledgements

This work was possible due to a Grant from Northeastern States Research Cooperative Grant and funds from the Cary Institute of Ecosystem Studies. We would like to thank Holly Wellard-Kelly, Shelby Servais, Arial Shogren, Dustin Kincaid, Kathryn Vallis, Garrett Peters, Clifford Kraft, the ALC Little Moose Fisheries Station, Daniel Josephson, NH Fish and Game, John McGee for collaborative efforts with the restoration measures that occurred in Nash watershed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Bechtold.

Additional information

Authors contribution

HAB performed research, designed study, analyzed data, and wrote the paper. EJR, DRW, WSK conceived, designed study, and wrote the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10021_2016_93_MOESM1_ESM.tif

Box and whisker figures of response variables in categories of forest age from 13 Northeastern US sites and 3 seasons (June, Oct, August). We defined site categories within our dataset as follows: young forest as < 50 years old, middle-aged forest 80-158 years old and old growth forest as 245-347 years old. PAR = photosynthetically active radiation (mol m-2 d-1), Chl a = benthic chl a (standing stock, µg cm-2), Vf = uptake velocity (mm sec-1), GPP= gross primary production (g O2 m-2 d-1) ER = ecosystem respiration (g O2 m-2 d-1). Dots represent outliers more/less than 3/2 times of upper or lower quartile, error bars= maximum or minimum value (excluding outliers), boxes represent upper and lower quartiles, and mid-line shows median values of data. Online Appendix (TIFF 705 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bechtold, H.A., Rosi, E.J., Warren, D.R. et al. Forest Age Influences In-stream Ecosystem Processes in Northeastern US. Ecosystems 20, 1058–1071 (2017). https://doi.org/10.1007/s10021-016-0093-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-016-0093-9

Keywords

Navigation