Skip to main content

Advertisement

Log in

Linking Above- and Belowground Responses to 16 Years of Fertilization, Mowing, and Removal of the Dominant Species in a Temperate Grassland

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Species-rich oligotrophic meadows are affected by a wide range of management interventions that influence their functioning and capacity to deliver ecosystem services, but long-term studies on the above- and belowground adaptations to different management tools are still scarce. We focused on the interactive effects of NPK fertilization, mowing, and removal of the initially dominant species (Molinia caerulea) on plant, soil, and microbial responses in wet oligotrophic grassland in a 16-year full-factorial manipulative experiment. Changes in vegetation composition, soil pH, and nutrient availability were accompanied by altered microbial phospholipid fatty acid (PLFA) composition, whereas treatment effects on soil microbial biomass and carbon (C) mineralization were mainly related to changes in soil organic matter (SOM) content and nutrient availability. Fertilization decreased plant species richness aboveground and lowered SOM storage and microbial activity belowground. Mowing preserved high plant diversity and led to more efficient recycling of N within the grassland, whereas Molinia removal significantly affected only plant community composition. Mowing combined with fertilization maintained high species richness only in the short term. Belowground, mowing reduced N leaching from the fertilized system but did not prevent SOM depletion, soil acidification, and concomitant adverse effects on soil microbes. We conclude that annual mowing is the appropriate type of extensive management for oligotrophic species-rich meadows, but the concomitant nutrient depletion should not be compensated for by regular NPK fertilization due to its adverse effects on soil quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Agren GI, Bosatta E, Magill AH. 2001. Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition. Oecologia 128:94–8.

    Article  Google Scholar 

  • Bååth E, Anderson T-H. 2003. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol Biochem 35:955–63.

    Article  Google Scholar 

  • Bardgett RD, McAlister E. 1999. The measurement of soil fungal:bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biol Fertil Soils 29:282–90.

    Article  Google Scholar 

  • Bardgett RD, Mawdsley JL, Edwards S, Hobbs PJ, Rodwell JS, Davies WJ. 1999. Plant species and nitrogen effects on soil biological properties of temperate upland grasslands. Funct Ecol 19:650–60.

    Article  Google Scholar 

  • Bardgett RD, Shine A. 1999. Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grasslands. Soil Biol Biochem 31:317–21.

    Article  CAS  Google Scholar 

  • Bardgett RD, Wardle DA, Yeates GW. 1998. Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biol Biochem 30:1867–78.

    Article  CAS  Google Scholar 

  • Bárta J, Šlajsová P, Tahovská K, Picek T, Šantrůčková H. 2013. Different temperature sensitivity and kinetics of soil enzymes indicate seasonal shifts in C, N and P nutrient stoichiometry in acid forest soil. Biogeochemistry 117:525–37.

    Article  Google Scholar 

  • Bengston P, Barker J, Grayston J. 2012. Evidence of a strong coupling between root exudation, C and N availability, and stimulated SOM decomposition caused by rhizosphere priming effect. Ecol Evol 2:1843–52.

    Article  Google Scholar 

  • Bossio DA, Scow KM. 1998. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb Ecol 35:265–78.

    Article  CAS  PubMed  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS. 1985. Chloroform fumigation and release of soil nitrogen: a rapid and direct extraction method to measure microbial biomass nitrogen. Soil Biol Biochem 17:837–47.

    Article  CAS  Google Scholar 

  • Brookes PC, Powlson DS, Jenkinson DS. 1982. Measurement of microbial biomass phosphorus in soil. Soil Biol Biochem 14:319–29.

    Article  CAS  Google Scholar 

  • Chytrý M. 2012. Vegetation of the Czech Republic: diversity, ecology, history and dynamics. Preslia 84:427–504.

    Google Scholar 

  • Clark CM, Cleland EE, Collins SL, Fargione JE, Gough L, Gross KL, Pennings SC, Suding KN, Grace JB. 2007. Environmental and plant community determinants of species loss following nitrogen enrichment. Ecol Lett 10:596–607.

    Article  PubMed  Google Scholar 

  • Conant RT, Paustian L, Elliot ET. 2001. Grassland management and conversion into grassland: effects on soil carbon. Ecol Appl 11:343–55.

    Article  Google Scholar 

  • De Deyn GB, Cornelissen JHC, Bardgett RD. 2008. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11:516–31.

    Article  PubMed  Google Scholar 

  • Doornbos RF, van Loon LC, Bakker PAHM. 2012. Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron Sustain Dev 32:227–43.

    Article  Google Scholar 

  • Eisenhauer N, Cesarz S, Koller R, Worm K, Reich PB. 2012. Global change belowground: impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity. Glob Change Biol 18:435–47.

    Article  Google Scholar 

  • Fernández-Calviño D, Bååth E. 2010. Growth response of the bacterial community to pH in soils differing in pH. FEMS Microbiol Ecol 73:149–56.

    PubMed  Google Scholar 

  • Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC. 2009. Global patterns in belowground communities. Ecol Lett 12:1238–49.

    Article  PubMed  Google Scholar 

  • Fornara DA, Bardgett R, Steinbeiss S, Zak DR, Gleixner G, Tilman D. 2011. Plant effects on soil N mineralization are mediated by the composition of multiple soil organic fractions. Ecol Res 26:201–8.

    Article  CAS  Google Scholar 

  • Freschet GT, Cornwell WK, Wardle DA, Elumeeva TG, Liu W, Jackson BG, Onipchenko VG, Soudzilovskaia NA, Tao J, Cornelissen JHC. 2013. Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide. J Ecol 101:943–52.

    Article  CAS  Google Scholar 

  • Friesen ML, Porter SS, Stark SC, von Wettberg EJ, Sachs JL, Martinez-Romero E. 2011. Microbially mediated plant functional traits. Ann Rev Ecol Evol Syst 42:23–46.

    Article  Google Scholar 

  • Frostegård Å, Bååth E. 1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65.

    Article  Google Scholar 

  • Frostegård Å, Bååth E, Tunlid A. 1993. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol Biochem 25:723–30.

    Article  Google Scholar 

  • Galvánek D, Lepš J. 2008. Changes of species richness pattern in mountain grasslands: abandonment versus restoration. Biodivers Conserv 17:3241–53.

    Article  Google Scholar 

  • Guitian R, Bardgett RD. 2000. Plant and soil microbial responses to defoliation in temperate semi-natural grassland. Plant Soil 220:271–7.

    Article  CAS  Google Scholar 

  • Hamilton EW, Frank DA. 2001. Plant defoliation promotes microbial nitrogen cycling through increased root exudation of carbon. Ecology 82:2397–402.

    Article  Google Scholar 

  • Hartmann A, Schmid M, van Tuinen D, Berg G. 2009. Plant-driven selection of microbes. Plant Soil 321:235–57.

    Article  CAS  Google Scholar 

  • Hedlund K, Regina IS, Van der Putten WH, Lepš J, Díaz T, Korthals GW, Lavorel S, Brown VK, Gormsen D, Mortimer SR, Barrueco CR, Roy J, Smilauer P, Smilauerova M, Van Dijk C. 2003. Plant species diversity, plant biomass and responses of the soil community on abandoned land across Europe: idiosyncracy or above-belowground time lags. Oikos 103:45–58.

    Article  Google Scholar 

  • Hejcman M, Sochorova L, Pavlu V, Strobach J, Diepolder M, Schellberg J. 2014. The Steinach grassland experiment: soil chemical properties, sward height and plant species composition in three cut alluvial meadow after decades-long fertilizer application. Agric Ecosyst Environ 184:76–87.

    Article  CAS  Google Scholar 

  • Kaiser Ch, Koranda M, Kitzler B, Fuchslueger L, Schnecker J, Schweiger P, Rasche F, Zechmeister-Boltenstern S, Sessitch A, Richter A. 2010. Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytol 187:843–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaligaric M, Ciluberg M, Kramberger B. 2006. Recent vegetation history of the North Adriatic grasslands: expansion and decay of an anthropogenic habitat. Folia Geobotanica 41:241–58.

    Article  Google Scholar 

  • Kamble PN, Rousk J, Frey SD, Bååth E. 2013. Bacterial growth and growth-limiting nutrients following chronic nitrogen additions to a hardwood forest soil. Soil Biol Biochem 59:32–7.

    Article  CAS  Google Scholar 

  • Kaštovská E, Edwards K, Picek T, Šantrůčková H. 2014. A larger investment into exudation by competitive versus conservative plants is connected to more coupled plant-microbe N cycling. Biogeochemistry 122:47–59.

    Article  Google Scholar 

  • Kaštovská E, Picek T, Bárta J, Mach J, Cajthaml T, Edwards K. 2012. Nutrient addition retards decomposition and C immobilization in two wet grasslands. Hydrobiologia 692:67–81.

    Article  Google Scholar 

  • Kopáček J, Borovec J, Hejzlar J, Porcal P. 2001. Spectrophotometric determination of iron, aluminium, and phosphorus in soil and sediment extracts after their nitric and perchloric acid digestion. Commun Soil Sci Plant Anal 32:1431–43.

    Article  Google Scholar 

  • Kroppenstedt RM. 1985. Fatty acid and menaquinone analysis of actinomycetes and related organisms. In: Goodfellow M, Minikin DE, Eds. Chemical methods in bacterial systematics. London: Academic Press. p 173–94.

    Google Scholar 

  • Kuzyakov Y, Biryukova OV, Kuznetsova TV, Molter K, Kandeler E, Stahr K. 2002. Carbon partitioning in plant and soil, carbon dioxide fluxes and enzyme activities as affected by cutting ryegrass. Biol Fertil Soils 35:348–58.

    Article  CAS  Google Scholar 

  • Kuzyakov Y. 2010. Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–71.

    Article  CAS  Google Scholar 

  • Lange M, Eisenhauer N, Sierra CA, Bessler H, Engels C, Griffiths RI, Mellado-Vázquez PG, Malik AA, Roy J, Scheu S, Steinbeiss S, Thomson BC, Trumbore SE, Gleixner G. 2015. Plant diversity increases soil microbial activity and soil carbon storage. Nat Commun 6:6707. doi:10.1038/ncomms7707.

    Article  CAS  PubMed  Google Scholar 

  • Legay N, Grassein F, Binet MN, Arnoldi C, Personeni E, Perigon S, Poly F, Pommier T, Puissant J, Clément JC, Lavorel S, Mouhamadou B. 2016. Plant species identities and fertilization influence on arbuscular mycorrhizal fungal colonization and soil bacterial activities. Appl Soil Ecol 98:132–9.

    Article  Google Scholar 

  • Lepš J. 1999. Nutrient status, disturbance and competition? An experimental test of relationships in a wet meadow. J Veg Sci 10:219–30.

    Article  Google Scholar 

  • Lepš J. 2004. Variability in population and community biomass in a grassland community affected by environmental productivity and diversity. Oikos 107:64–71.

    Article  Google Scholar 

  • Lepš J. 2014. Scale- and time-dependent effects of fertilization, mowing and dominant removal on a grassland community during a 15-year experiment. J Appl Ecol 51:978–87.

    Article  Google Scholar 

  • Lepš J, de Bello F, Šmilauer P, Doležal J. 2011. Community trait response to environment: disentangling species turnover vs intraspecific trait variability effects. Ecography 34:856–63.

    Article  Google Scholar 

  • Liu L, Greaver TL. 2010. A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecol Lett 13:819–28.

    Article  PubMed  Google Scholar 

  • Liu W, Jiang L, Hu S, Li L, Liu L, Wan S. 2014. Decoupling of soil microbes and plants with increasing anthropogenic nitrogen inputs in a temperate steppe. Soil Biol Biochem 72:116–22.

    Article  CAS  Google Scholar 

  • Marx MC, Wood M, Jarvis SC. 2001. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol Biochem 33:1633–40.

    Article  CAS  Google Scholar 

  • Nyborg M, Molina-Ayala M, Solberg ED, Izaurralde EC, Malhi SS, Janzen HH. 1997. Carbon storage in grassland soils as related to N and S fertilizers. In: Lal R, Ed. Management of carbon sequestration in soil. Boca Raton: CRC Press. p 421–32.

    Google Scholar 

  • Orwin KH, Buckland SM, Johnson D, Turner BL, Smart S, Oakley S, Bardgett RD. 2010. Linkages of plant traits to soil properties and the functioning of temperate grassland. J Ecol 98:1074–83.

    Article  Google Scholar 

  • Paterson E. 2003. Importance of rhizodeposition in the coupling of plant and microbial productivity. Eur J Soil Sci 54:741–50.

    Article  Google Scholar 

  • Rennert T, Gockel KF, Mansfeld T. 2007. Extraction of water-soluble organic matter from mineral horizons of forest soils. J Plant Nutr Soil Sci 170:514–21.

    Article  CAS  Google Scholar 

  • Rousk J, Bååth E, Brooks PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N. 2010a. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–51.

    Article  PubMed  Google Scholar 

  • Rousk J, Brookes PC, Bååth E. 2010b. The microbial PLFA composition as affected by pH in an arable soil. Soil Biol Biochem 42:516–20.

    Article  CAS  Google Scholar 

  • Rousk J, Brookes PC, Bååth E. 2011. Fungal and bacterial growth responses to N fertilization and pH in the 150-year ´Park Grass´ UK grassland experiment. FEMS Microbiol Ecol 76:89–99.

    Article  CAS  PubMed  Google Scholar 

  • Sillen WMA, Dieleman WIJ. 2012. Effects of elevated CO2 and N fertilization on plant and soil carbon pools of managed grasslands: a meta-analysis. Biogeosciences 9:2247–58.

    Article  CAS  Google Scholar 

  • Silvertown J, Poulton P, Johnston E, Edwards G, Heard M, Biss PM. 2006. The park grass experiment 1856–2006: Its contribution to ecology. J Ecol 94:801–14.

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Hill BH, Shah JJF. 2009. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462:795–8.

    Article  CAS  PubMed  Google Scholar 

  • Šmilauer P, Lepš J. 2014. Multivariate analysis of ecological data using CANOCO 5. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Ter Braak CJF, Šmilauer P. 2012. Canoco reference manual and user’s guide: software for ordination, version 5.0. Ithaca: Microcomputer Power. p 496.

    Google Scholar 

  • Thomas GW. 1982. Exchangeable cations. In: Page AL, Ed. Methods of soil analysis, Part 2 Chemical and microbiological properties, 2nd edition. Agronomy 9. pp 159–65.

  • Tóth G. 2008. Soil quality in the European Union. In: Tóth G, Montanarella L, Rusco E, Eds. Threats to soil quality in Europe. JRC Scientific and Technical Reports. pp 11–9.

  • Treseder KK. 2008. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol Lett 11:1111–20.

    Article  PubMed  Google Scholar 

  • Uhlířová E, Šimek M, Šantrůčková H. 2005. Microbial transformation of organic matter in soils of montane grasslands under different management. Appl Soil Ecol 28:225–35.

    Article  Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM. 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310.

    Article  PubMed  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS. 1987. An extraction method for measuring soil microbial biomass-C. Soil Biol Biochem 19:703–7.

    Article  CAS  Google Scholar 

  • Venterink HO, Kardel I, Kotowski W, Peeters W, Wassen MJ. 2009. Long-term effects of drainage and hey-removal on nutrient dynamics and limitation in the Biebrza mires, Poland. Biogeochemistry 93:235–52.

    Article  Google Scholar 

  • Wagai R, Sollins P. 2002. Biodegradation and regeneration of water-soluble carbon in a forest soil: leaching column study. Biol Fertil Soils 35:18–26.

    Article  CAS  Google Scholar 

  • Wei CZ, Yu Q, Bai E, Lu XT, Li Q, Xia JY, Kardol P, Liang WJ, Wang ZW, Han XG. 2013. Nitrogen deposition weakens plant–microbe interactions in grassland ecosystems. Glob Change Biol 19:3688–97.

    Article  Google Scholar 

  • Zhang X, Chen Q, Han X. 2013. Soil bacterial communities respond to mowing and nutrient addition in a steppe ecosystem. PLoS ONE 8:e84210.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research was supported by the Grant Agency of the Czech Republic (GAČR, Project No. 13-17118S). We thank Gerhard Kerstiens for his help with the language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Kotas.

Additional information

Author contributions

All authors conceived the study; PK, HS, and EK analyzed the data; PK performed the PLFA analysis; MC analyzed the physico-chemical soil properties and performed microbial biomass measurements; JL designed and managed the long-term experiment and monitored the plant community; PK wrote the paper with editorial assistance from all authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 362 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotas, P., Choma, M., Šantrůčková, H. et al. Linking Above- and Belowground Responses to 16 Years of Fertilization, Mowing, and Removal of the Dominant Species in a Temperate Grassland. Ecosystems 20, 354–367 (2017). https://doi.org/10.1007/s10021-016-0031-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-016-0031-x

Keywords

Navigation