Skip to main content
Log in

Do Nutrient Limitation Patterns Shift from Nitrogen Toward Phosphorus with Increasing Nitrogen Deposition Across the Northeastern United States?

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Atmospheric nitrogen (N) deposition is altering biogeochemical cycling in forests and interconnected lakes of the northeastern US, and may shift nutrient limitation from N toward other essential elements, such as phosphorus (P). Whether this shift is occurring relative to N deposition gradients across the northeastern US has not been investigated. We used datasets for the northeastern US and the Adirondack sub-region to evaluate whether P limitation is increasing where N deposition is high at two geographic scales, based on N:P mass ratios. Using a model-selection approach, we determined that foliar N for dominant tree species and lake dissolved inorganic N (DIN) increased coincident with increasing N deposition, independent of relationships between foliar N or lake DIN and precipitation or temperature. Foliar P also increased with N deposition across the northeastern US for seven of eight deciduous species, but changed less across the Adirondacks. Foliar N:P therefore declined at the highest levels of N deposition for most deciduous species across the region (remaining nearly constant for most conifers and increasing only for black cherry and hemlock), but increased across all species in the Adirondacks. Ratios between DIN and total P (DIN:TP) in lakes were unrelated to N deposition regionally but increased across the Adirondacks. Thus, nutrient limitation patterns shifted from N toward P for dominant trees, and further toward P for predominantly P-limited lakes, at the sub-regional but not regional scale. For the northeastern US overall, accumulated N deposition may be insufficient to drive nutrient limitation from N toward P; alternatively, elements other than P (for example, calcium, magnesium) may become limiting as N accumulates. The consistent Adirondack foliar and lake response could provide early indication of shifts toward P limitation within the northeastern US, and together with regional patterns, suggests that foliar chemistry could be a predictor of lake chemistry in the context of N deposition across the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM. 1989. Nitrogen saturation in northern forest ecosystems. Bioscience 39:378–86.

    Article  Google Scholar 

  • Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I. 1998. Nitrogen saturation in temperate forest ecosystems—hypotheses revisited. Bioscience 48:921–34.

    Article  Google Scholar 

  • Aber JD, Goodale CL, Ollinger SV, Smith ML, Magill AH, Martin ME, Hallett RA, Stoddard JL. 2003. Is nitrogen deposition altering the nitrogen status of northeastern forests? Bioscience 53:375–89.

    Article  Google Scholar 

  • Adams RM, Twiss MR, Driscoll CT. 2009. Patterns of mercury accumulation among seston in lakes of the Adirondack Mountains, New York. Environ Sci Technol 43:4836–42.

    Article  PubMed  CAS  Google Scholar 

  • Agren GI, Bosatta E. 1988. Nitrogen saturation of terrestrial ecosystems. Environ Pollut 54:185–97.

    Article  PubMed  CAS  Google Scholar 

  • Auchmoody LR. 1982. Response of young black cherry stands to fertilization. Can J For Res 12:319–25.

    Article  Google Scholar 

  • Baron JS, Driscoll CT, Stoddard JL, Richer E. 2011. Empirical critical loads of atmospheric nitrogen deposition for nutrient enrichment and acidification of sensitive US lakes. Bioscience 61:602–13.

    Article  Google Scholar 

  • Bedison JE, McNeil BE. 2009. Is the growth of temperate forest trees enhanced along an ambient nitrogen deposition gradient? Ecology 90:1736–42.

    Article  PubMed  Google Scholar 

  • Bergstrom AK. 2010. The use of TN:TP and DIN:TP ratios as indicators for phytoplankton nutrient limitation in oligotrophic lakes affected by N deposition. Aquat Sci 72:277–81.

    Article  Google Scholar 

  • Boggs JL, McNulty SG, Gavazzi MJ, Myers JM. 2005. Tree growth, foliar chemistry, and nitrogen cycling across a nitrogen deposition gradient in southern Appalachian deciduous forests. Can J For Res 35:1901–13.

    Article  CAS  Google Scholar 

  • Boggs JL, McNulty SG, Pardo LH. 2007. Changes in conifer and deciduous forest foliar and forest floor chemistry and basal area tree growth across a nitrogen (N) deposition gradient in the northeastern US. Environ Pollut 149:303–14.

    Article  PubMed  CAS  Google Scholar 

  • Brady NC, Weil RR. 2001. The nature and properties of soils. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Braun S, Thomas VFD, Quiring R, Fluckiger W. 2010. Does nitrogen deposition increase forest production? The role of phosphorus. Environ Pollut 158:2043–52.

    Article  PubMed  CAS  Google Scholar 

  • Burnham KP, Anderson DR. 2002. Model selection and multimodel inference: a practical information-theoretic approach. New York: Springer-Verlag.

    Google Scholar 

  • Butler TJ, Likens GE, Vermeylen FM, Stunder BJB. 2003. The relation between NOx emissions and precipitation NO3 in the eastern USA. Atmos Environ 37:2093–104.

    Article  CAS  Google Scholar 

  • Compton JE, Cole DW. 1998. Phosphorus cycling and soil P fractions in Douglas-fir and red alder stands. For Ecol Manage 110:101–12.

    Article  Google Scholar 

  • Craine JM. 2009. Resource strategies of wild plants. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Craine JM, Morrow C, Stock WD. 2008. Nutrient concentration ratios and co-limitation in South African grasslands. New Phytol 179:829–36.

    Article  PubMed  CAS  Google Scholar 

  • Davidson EA, Howarth RW. 2007. Environmental science—nutrients in synergy. Nature 449:1000–1.

    Article  PubMed  CAS  Google Scholar 

  • Dodds WK. 2003. Misuse of inorganic N and soluble reactive P concentrations to indicate nutrient status of surface waters. J N Am Benthol Soc 22:171–81.

    Article  Google Scholar 

  • Driscoll CT, Whitall D, Aber J, Boyer E, Castro M, Cronan C, Goodale CL, Groffman P, Hopkinson C, Lambert K, Lawrence G, Ollinger S. 2003. Nitrogen pollution in the northeastern United States: sources, effects, and management options. Bioscience 53:357–74.

    Article  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–42.

    Article  PubMed  Google Scholar 

  • Elser JJ, Andersen T, Baron JS, Bergstrom AK, Jansson M, Kyle M, Nydick KR, Steger L, Hessen DO. 2009a. Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science 326:835–7.

    Article  PubMed  CAS  Google Scholar 

  • Elser JJ, Kyle M, Steger L, Nydick KR, Baron JS. 2009b. Nutrient availability and phytoplankton nutrient limitation across a gradient of atmospheric nitrogen deposition. Ecology 90:3062–73.

    Article  PubMed  Google Scholar 

  • Elser JJ, Peace AL, Kyle M, Wojewodzic M, McCrackin ML, Andersen T, Hessen DO. 2010. Atmospheric nitrogen deposition is associated with elevated phosphorus limitation of lake zooplankton. Ecol Lett 13:1256–61.

    Article  PubMed  Google Scholar 

  • Elvir JA, Rustad L, Wiersma GB, Fernandez I, White AS, White GJ. 2005. Eleven-year response of foliar chemistry to chronic nitrogen and sulfur additions at the Bear Brook Watershed in Maine. Can J For Res 35:1402–10.

    Article  CAS  Google Scholar 

  • Fenn ME, Poth MA, Aber JD, Baron JS, Bormann BT, Johnson DW, Lemly AD, McNulty SG, Ryan DE, Stottlemyer R. 1998. Nitrogen excess in North American ecosystems: predisposing factors, ecosystem responses, and management strategies. Ecol Appl 8:706–33.

    Article  Google Scholar 

  • Finzi AC. 2009. Decades of atmospheric deposition have not resulted in widespread phosphorus limitation or saturation of tree demand for nitrogen in southern New England. Biogeochemistry 92:217–29.

    Article  CAS  Google Scholar 

  • Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ. 2003. The nitrogen cascade. Bioscience 53:341–56.

    Article  Google Scholar 

  • Goffe WL, Ferrier GD, Rogers J. 1994. Global optimization of statistical functions with simulated annealing. J Econom 60:65–99.

    Article  Google Scholar 

  • Gradowski T, Thomas SC. 2006. Phosphorus limitation of sugar maple growth in central Ontario. For Ecol Manage 226:104–9.

    Article  Google Scholar 

  • Gradowski T, Thomas SC. 2008. Responses of Acer saccharum canopy trees and saplings to P, K and lime additions under high N deposition. Tree Physiol 28:173–85.

    Article  PubMed  CAS  Google Scholar 

  • Gress SE, Nichols TD, Northcraft CC, Peterjohn WT. 2007. Nutrient limitation in soils exhibiting differing nitrogen availabilities: what lies beyond nitrogen saturation? Ecology 88:119–30.

    Article  PubMed  Google Scholar 

  • Gundersen P, Emmett BA, Kjonaas OJ, Koopmans CJ, Tietema A. 1998. Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data. For Ecol Manage 101:37–55.

    Article  Google Scholar 

  • Güsewell S. 2004. N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–66.

    Article  Google Scholar 

  • Houlton BZ, Wang YP, Vitousek PM, Field CB. 2008. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454:U327–34.

    Article  Google Scholar 

  • Hoyle MC. 1971. Effects of the chemical environment on yellow-birch root development and top growth. Plant Soil 35:623–33.

    Article  CAS  Google Scholar 

  • Ito M, Mitchell MJ, Driscoll CT. 2002. Spatial patterns of precipitation quantity and chemistry and air temperature in the Adirondack region of New York. Atmos Environ 36:1051–62.

    Article  CAS  Google Scholar 

  • Ito M, Mitchell MJ, Driscoll CT, Roy KM. 2005. Nitrogen input–output budgets for lake-containing watersheds in the Adirondack region of New York. Biogeochemistry 72:283–314.

    Article  CAS  Google Scholar 

  • Koerselman W, Meuleman AFM. 1996. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–50.

    Article  Google Scholar 

  • Long RP, Horsley SB, Hallett RA, Bailey SW. 2009. Sugar maple growth in relation to nutrition and stress in the northeastern United States. Ecol Appl 19:1454–66.

    Article  PubMed  Google Scholar 

  • Lovett GM, Goodale CL. 2011. A new conceptual model of nitrogen saturation based on experimental nitrogen addition to an oak forest. Ecosystems 14:615–31.

    Article  CAS  Google Scholar 

  • Lovett GM, Weathers KC, Sobczak WV. 2000. Nitrogen saturation and retention in forested watersheds of the Catskill Mountains, New York. Ecol Appl 10:73–84.

    Article  Google Scholar 

  • Magill AH, Aber JD, Berntson GM, McDowell WH, Nadelhoffer KJ, Melillo JM, Steudler P. 2000. Long-term nitrogen additions and nitrogen saturation in two temperate forests. Ecosystems 3:238–53.

    Article  Google Scholar 

  • Magill AH, Aber JD, Currie WS, Nadelhoffer KJ, Martin ME, McDowell WH, Melillo JM, Steudler P. 2004. Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. For Ecol Manage 196:7–28.

    Article  Google Scholar 

  • Marklein AR, Houlton BZ. 2012. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytol 193:696–704.

    Article  PubMed  CAS  Google Scholar 

  • McNeil BE, Read JM, Driscoll CT. 2007. Foliar nitrogen responses to elevated atmospheric nitrogen deposition in nine temperate forest canopy species. Environ Sci Technol 41:5191–7.

    Article  PubMed  CAS  Google Scholar 

  • McNeil BE, Read JM, Sullivan TJ, McDonnell TC, Fernandez IJ, Driscoll CT. 2008. The spatial pattern of nitrogen cycling in the Adirondack Park, New York. Ecol Appl 18:438–52.

    Article  PubMed  Google Scholar 

  • McNeil BE, Read JM, Driscoll CT. 2012. Foliar nitrogen responses to the environmental gradient matrix of the Adirondack Park, New York. Ann Assoc Am Geogr 102:1–15.

    Article  Google Scholar 

  • McNulty SG, Aber JD, Boone RD. 1991. Spatial changes in forest floor and foliar chemistry of spruce-fir forests across New England. Biogeochemistry 14:13–29.

    Article  CAS  Google Scholar 

  • McNulty SG, Boggs J, Aber JD, Rustad L, Magill A. 2005. Red spruce ecosystem level changes following 14 years of chronic N fertilization. For Ecol Manage 219:279–91.

    Article  Google Scholar 

  • Mohren GMJ, Vandenburg J, Burger FW. 1986. Phosphorus deficiency induced by nitrogen input in Douglas-fir in the Netherlands. Plant Soil 95:191–200.

    Article  CAS  Google Scholar 

  • Moldan B, Cerny J. 1994. Biogeochemistry of small catchments: a tool for environmental research. SCOPE 51. Chichester: John Wiley & Sons.

    Google Scholar 

  • Morris DP, Lewis WM. 1988. Phytoplankton nutrient limitation in Colorado mountain lakes. Freshw Biol 20:315–27.

    Article  Google Scholar 

  • Nadelhoffer KJ. 2000. The potential effects of nitrogen deposition on fine-root production in forest ecosystems. New Phytol 147:131–9.

    Article  CAS  Google Scholar 

  • Nanus L, Williams MW, Campbell DH, Elliott EM, Kendall C. 2008. Evaluating regional patterns in nitrate sources to watersheds in national parks of the Rocky Mountains using nitrate isotopes. Environ Sci Technol 42:6487–93.

    Article  PubMed  CAS  Google Scholar 

  • NERC. 2010a. Northeastern Ecosystem Research Cooperative (NERC) compilation of foliar chemistry data for the northeastern United States and southeastern Canada. NERC 12.6. http://www.nercscience.org. Accessed 22 Nov 2010.

  • NERC. 2010b. Northeastern Ecosystem Research Cooperative (NERC) compilation of surface water chemistry data for the northeastern United States and southeastern Canada. NERC 14.4. http://www.nercscience.org. Accessed 22 Nov 2010.

  • Nilsson LO, Wallander H. 2003. Production of external mycelium by ectomycorrhizal fungi in a Norway spruce forest was reduced in response to nitrogen fertilization. New Phytol 158:409–16.

    Article  Google Scholar 

  • Ollinger SV, Aber JD, Lovett GM, Millham SE, Lathrop RG, Ellis JM. 1993. A spatial model of atmospheric deposition for the northeastern United States. Ecol Appl 3:459–72.

    Article  Google Scholar 

  • Ollinger S, Aber J, Federer C, Lovett G, Ellis J. 1995. Modeling physical and chemical climate of the northeastern United States for a geographical information system. USDA Forest Service General Technical Report NE-191, Radnor, PA.

  • Ollinger SV, Smith ML, Martin ME, Hallett RA, Goodale CL, Aber JD. 2002. Regional variation in foliar chemistry and N cycling among forests of diverse history and composition. Ecology 83:339–55.

    Google Scholar 

  • Pardo LH, Templer PH, Goodale CL, Duke S, Groffman PM, Adams MB, Boeckx P, Boggs J, Campbell J, Colman B, Compton J, Emmett B, Gundersen P, Kjonaas J, Lovett G, Mack M, Magill A, Mbila M, Mitchell MJ, McGee G, McNulty S, Nadelhoffer K, Ollinger S, Ross D, Rueth H, Rustad L, Schaberg P, Schiff S, Schleppi P, Spoelstra J, Wessel W. 2006. Regional assessment of N saturation using foliar and root delta N-15. Biogeochemistry 80:143–71.

    Article  Google Scholar 

  • Pardo LH, McNulty SG, Boggs JL, Duke S. 2007. Regional patterns in foliar N-15 across a gradient of nitrogen deposition in the northeastern US. Environ Pollut 149:293–302.

    Article  PubMed  CAS  Google Scholar 

  • Pardo LH, Fenn M, Goodale CL, Geiser LH, Driscoll CT, Allen EB, Baron J, Bobbink R, Bowman WD, Clark C, Emmett B, Gilliam FS, Greaver T, Hall SJ, Lilleskov EA, Liu L, Lynch J, Nadelhoffer K, Perakis S, Robin-Abbott MJ, Stoddard J, Weathers K, Dennis RL. 2011. Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States. Ecol Appl 21:3049–82.

    Article  Google Scholar 

  • Perring MP, Hedin LO, Levin SA, McGroddy M, de Mazancourt C. 2008. Increased plant growth from nitrogen addition should conserve phosphorus in terrestrial ecosystems. Proc Nat Acad Sci USA 105:1971–6.

    Article  PubMed  CAS  Google Scholar 

  • Pettersson R, McDonald AJS, Stadenberg I. 1993. Response of small birch plants (Betula pendula—Roth) to elevated CO2 and nitrogen supply. Plant, Cell Environ 16:1115–21.

    Article  CAS  Google Scholar 

  • Redfield AC. 1958. The biological control of chemical factors in the environment. Am Sci 46:205–21.

    CAS  Google Scholar 

  • Reich PB, Oleksyn J. 2004. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Nat Acad Sci USA 101:11001–6.

    Article  PubMed  CAS  Google Scholar 

  • Schaberg PG, Perkins TD, McNulty SG. 1997. Effects of chronic low-level N additions on foliar elemental concentrations, morphology, and gas exchange of mature montane red spruce. Can J For Res 27:1622–9.

    Article  CAS  Google Scholar 

  • Schaberg PG, DeHayes DH, Hawley GJ, Murakami PF, Strimbeck GR, McNulty SG. 2002. Effects of chronic N fertilization on foliar membranes, cold tolerance, and carbon storage in montane red spruce. Can J For Res 32:1351–9.

    Article  CAS  Google Scholar 

  • Schindler DE. 1977. Evolution of phosphorus limitation in lakes. Science 195:260–2.

    Article  PubMed  CAS  Google Scholar 

  • Schindler DW, Hecky RE, Findlay DL, Stainton MP, Parker BR, Paterson MJ, Beaty KG, Lyng M, Kasian SEM. 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proc Nat Acad Sci USA 105:11254–8.

    Article  PubMed  CAS  Google Scholar 

  • Sherman J, Fernandez IJ, Norton SA, Ohno T, Rustad LE. 2006. Soil aluminum, iron, and phosphorus dynamics in response to long-term experimental nitrogen and sulfur additions at the Bear Brook Watershed in Maine, USA. Environ Monit Assess 121:421–9.

    Article  PubMed  CAS  Google Scholar 

  • Tessier JT, Raynal DJ. 2003. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. J Appl Ecol 40:523–34.

    Article  CAS  Google Scholar 

  • Thomas RQ, Canham CD, Weathers KC, Goodale CL. 2010. Increased tree carbon storage in response to nitrogen deposition in the US. Nat Geosci 3:13–17.

    Article  Google Scholar 

  • Townsend AR, Cleveland CC, Asner GP, Bustamante MMC. 2007. Controls over foliar N:P ratios in tropical rain forests. Ecology 88:107–18.

    Article  PubMed  Google Scholar 

  • Treseder KK. 2004. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–55.

    Article  Google Scholar 

  • Vadeboncoeur MA. 2010. Meta-analysis of fertilization experiments indicates multiple limiting nutrients in northeastern deciduous forests. Can J For Res 40:1766–80.

    Article  CAS  Google Scholar 

  • Vitousek PM, Porder S, Houlton BZ, Chadwick OA. 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol Appl 20:5–15.

    Article  PubMed  Google Scholar 

  • Wallenda T, Kottke I. 1998. Nitrogen deposition and ectomycorrhizas. New Phytol 139:169–87.

    Article  CAS  Google Scholar 

  • Weand MP, Arthur MA, Lovett GM, McCulley RL, Weathers KC. 2010a. Effects of tree species and N additions on forest floor microbial communities and extracellular enzyme activities. Soil Biol Biochem 42:2161–73.

    Article  CAS  Google Scholar 

  • Weand MP, Arthur MA, Lovett GM, Sikora F, Weathers KC. 2010b. The phosphorus status of northern hardwoods differs by species but is unaffected by nitrogen fertilization. Biogeochemistry 97:159–81.

    Article  CAS  Google Scholar 

  • Weathers KC, Lovett GM, Likens GE, Lathrop R. 2000. The effect of landscape features on deposition to Hunter Mountain, Catskill Mountains, New York. Ecol Appl 10:528–40.

    Article  Google Scholar 

  • Weathers KC, Simkin SM, Lovett GM, Lindberg SE. 2006. Empirical modeling of atmospheric deposition in mountainous landscapes. Ecol Appl 16:1590–607.

    Article  PubMed  Google Scholar 

  • Yanai RD. 1992. Phosphorus budget of a 70-year-old northern hardwood forest. Biogeochemistry 17:1–22.

    Article  CAS  Google Scholar 

  • Yin XW. 1993. Variation in foliar nitrogen concentration by forest type and climatic gradients in North America. Can J For Res 23:1587–602.

    Article  CAS  Google Scholar 

  • Yu X, Driscoll CT, Montesdeoca M, Evers D, Duron M, Williams K, Schoch N, Kamman NC. 2011. Spatial patterns of mercury in biota of Adirondack, New York lakes. Ecotoxicology 20:1543–54.

    Article  PubMed  CAS  Google Scholar 

  • Zhu XB, Cox RM, Arp PA. 2000. Effects of xylem cavitation and freezing injury on dieback of yellow birch (Betula alleghaniensis) in relation to a simulated winter thaw. Tree Physiol 20:541–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would particularly like to acknowledge everyone who has generously contributed data to the NERC regional foliar and lake chemistry database, on which this study depended. As well as many of the co-authors, additional data contributors include Scott Bailey, Jana Compton, Tim Fahey, Steve Horsley, Bob Long, Mary Martin, Knute Nadelhoffer, Jen Pontius, Don Ross, Tom Siccama, Marie-Louise Smith, and many other NERC contributors. We would like to thank reviewers for thoughtful comments that have improved the manuscript, in particular encouraging us to include a landscape perspective linking aquatic and terrestrial systems. We would also like to thank funding sources, the US National Science Foundation Research Coordination Networks program (DEB-0342198), the W.M. Keck Foundation, the New York State Energy Research and Development Authority, the US Environmental Protection Agency, and the US Department of Agriculture Northeastern States Research Cooperative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. F. Crowley.

Additional information

Author Contributions

KC, BM, GL: conceived of and designed the project; KC, GL, CC: analyzed data and interpreted results; KC: drafted the manuscript; BM, GL, CD, LR, ED, RH, MA, JB, CG, JSK, SM, SO, LP, PS, JS, MW, KW: collected and contributed data; BM, GL, CC, CD, LR, ED, RH, MA, CG, JSK, SM, LP, PS, JS, MW, KW: assisted in interpretation and critically reviewed the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 395 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crowley, K.F., McNeil, B.E., Lovett, G.M. et al. Do Nutrient Limitation Patterns Shift from Nitrogen Toward Phosphorus with Increasing Nitrogen Deposition Across the Northeastern United States?. Ecosystems 15, 940–957 (2012). https://doi.org/10.1007/s10021-012-9550-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-012-9550-2

Keywords

Navigation