Skip to main content
Log in

Windage, churning and pocketing power losses of gears: different modeling approaches for different goals

Wirkungsgrad und Verluste von Zahnradgetrieben: Verschiedene Methoden für verschiedene Anwendungen

  • Übersichtsarbeiten/Review articles
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

Energy efficiency represents one of the most relevant trends in many fields, including the sector of power transmissions and gears, which are involved whenever power has to transmitted and transformed. For instance, in the automotive industry, gearboxes can contribute to the overall efficiency of the system and promote lower fuel consumption and emissions, both allowing an optimization of the whole system and reducing their own power losses. In many circumstances a better efficiency corresponds to lower operating temperatures and to a higher reliability of the systems, which can be related to the final profit, like in industrial applications, or even to the success, like for instance in motorsport racing. Improving the efficiency is therefore a main issue also for the gearbox manufacturers, and the availability of methods and tools to forecast the behavior with respect to lubrication and power losses since the beginning of the design phase strongly contributes to the goal.

In the years, many empirical models were derived from experimental tests and have represented the only available tool for such purpose, but today, thanks to the recent developments in the computer science, numerical approaches allow a more accurate modeling of the physics behind the power dissipation and also allow a description of the oil flow inside a gearbox, which is fundamental with respect to the reliability of the components of the transmission. Both approaches, either derived from experimental tests or based on numerical simulations, have advantages and drawbacks. For each single case and problem, depending on the specific condition, the most appropriate model is not always the same. In this paper a review of the different available tools is proposed, describing critically the properties of the single approaches in order to understand when each of them should be preferred. The review also includes the latest developments by the authors, which have not been previously published yet.

Zusammenfassung

Die Energieeffizienz ist einer der wichtigsten Trends in vielen Bereichen, wie z.B. in Zahnradgetrieben. In Kraftfahrzeugen kann ein optimiertes Zahnradgetriebe den gesamten Wirkungsgrad des Fahrzeugs erhöhen sowie die Schadstoffemissionen reduzieren. Ein höherer Wirkungsgrad bedeutet niedrigere Verluste und Betriebstemperaturen sowie höhere Zuverlässigkeit des Systems. Folglich ist auch der Profit von industriellen Prozessen oder auch der Erfolg eines Projekts (z.B. im Rennsport) sehr eng mit der Wirkungsgradoptimierung verbunden.

Um die Effizienz eines Zahnradgetriebes zu optimieren sind Vorhersagemethoden notwendig. In der Literatur sind heutzutage nur wenige und nicht sehr genaue Modelle verfügbar. Diese empirischen Modelle sind das Ergebnis einer Interpolation von experimentellen Versuchen. Durch die Entwicklung der Informatik und der Rechenleistung in den letzten Jahren, werden immer öfter numerische Methoden benutzt um den Wirkungsgrad von Zahnradgetrieben zu berechnen. Die empirischen Methoden haben dagegen eine große Einschränkung: Sie sind sehr spezifisch und daher oft nicht anwendbar oder wichtige Parametern werden nicht berücksichtigt. In dieser Veröffentlichung zeigen die Autoren die verschiedenen verfügbaren Modelle auf und zeigen Vor- und Nachteilen jeder Methode für verschieden Anwendungen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Bibliography

  1. Niemann G, Winter H (2002) Getriebe allgemein, Zahnradgetriebe – Grundlagen, Stirnradgetriebe. Maschinenelemente, vol. 2. Springer, Heidelberg

    Google Scholar 

  2. Concli F, Conrado E, Gorla C (2014) Analysis of power losses in an industrial planetary speed reducer: measurements and computational fluid dynamics calculations. Proc Inst Mech Eng Part J: J Eng Tribol 228(1):11–21

    Article  Google Scholar 

  3. Concli F, Gorla C (2012) Oil squeezing power losses in gears: A CFD analysis. WIT Trans Eng Sci 74:37–48

    Article  MATH  Google Scholar 

  4. Concli F, Gorla C (2012) Analysis of the oil squeezing power losses of a spur gear pair by mean of CFD simulations. ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis, ESDA, Nantes.

  5. Soo SL, Princeton NJ (1958) Laminar flow over an enclosed rotating disk. Trans ASME 80:287–296

    Google Scholar 

  6. Daily J, Nece R (1960) Chamber dimension effects of induced flow and frictional resistance of enclosed rotating disks. ASME J Basic Eng 82:217–232

    Article  Google Scholar 

  7. Mann R, Martson C (1961) Friction drag on bladesd diskc in housings as a function of Reynolds number, axial and radial clearance, and blade aspect ratio and solidity. ASME J Basic Eng 83:719–723

    Article  Google Scholar 

  8. Ohlendorf H (1962) Verlustleistung und Erwärmung von Stirnrädern. TU München, München

    Google Scholar 

  9. Richter W (1964) Stirnradgetriebe, Zahnreibung, Verlustleistung und Erwärmung. Vieweg, Braunschweig

    Google Scholar 

  10. Terekhov AS (1975) Hydraulic losses in gearboxes with oil immersion. Russ Eng J 55:7–11

    Google Scholar 

  11. Walter P (1982) Untersuchungen zur Tauchschmierung von Stirnrädern bei Umfangsgeschwindigkeiten bis 60 m/s. Universität Stuttgart, Stuttgart

    Google Scholar 

  12. Walter P, Langenbeck K (1982) Anwendungegrenzen für die Tauchschmierung von Zahnradgetrieben, Plansch- und Quetschverluste bei Tauchschmierung. Forschungsheft, vol. 118. FVA, Frankfurt am Main

    Google Scholar 

  13. Mauz W (1987) Hydraulische Verluste von Strinradgetrieben bei Umfansgsgeschwindigkeiten bis 60 m/s. IMK, Stuttgart

    Google Scholar 

  14. Changenet C, Velex P (2007) A model for the prediction of churning losses in geared teansmissions – preliminary results. ASME J Mech Des 129:128–133. doi:10.1115/1.2403727

    Article  Google Scholar 

  15. ISO/TR-14179-1 (2001) International Organization for Standardization, Switzerland

  16. Anderson N, Loewenthal S (1982) Design of spur gears for improved efficiency. ASME J Mech Des 104(4). doi:10.1115/1.3256434

    Google Scholar 

  17. Anderson N, Loewenthal E (1984) Efficiency of non-standard and high contact ratio involute spur gears. Lewis research center, Ohio

    Google Scholar 

  18. Dawson P (1984) Windage power losses in high speed gears. Arch Proc Inst Mech Eng Part A Power Proc Eng 198. doi:10.1243/pime_proc_1984_198_007_02

    Google Scholar 

  19. Dawson P (1988) High speed gear windage. GEC Rev 4(3):164

    Google Scholar 

  20. Maurer J (1994) Lastunabhängige Verzahnungsverluste schnellaufender Stirnradgetriebe. Universität Stuttgart, Stuttgart

    Google Scholar 

  21. Butsch H (1989) Hydraulische Verluste Schnelllaufender Stirnradgetriebe. Universität Stuttgart, Stuttgart

    Google Scholar 

  22. Butsch M (1989) Hydraulische Verluste schnelllaufender Stirnradgetriebe. Universität Stuttgart, Stuttgart

    Google Scholar 

  23. Dick A (1989) Untersuchungen zu den Lehrlaufverlusten eines einspritz-geschmierten Stirnradgetriebes. Universität Stuttgart, Stuttgart

    Google Scholar 

  24. Lord A (1998) An experimental investigation of geometric and oil flow effects on gear windage and meshing losses. Universisy of Walles, Swansea

    Google Scholar 

  25. Handschuh R, Klimain C (2003) Preliminary comparison of experimental and analytical efficiency results of high-speed helical gear trains. 9th International Power Transmission and Gearing Conference, Parts A and B. vol. 4. doi:10.1115/detc2003/ptg-48116

    Google Scholar 

  26. Diab Y, Ville F, Velex P, Changenet C (2004) Windage Losses in High-Speed Gears. Preliminary Experimental and Theoretical Results. ASME J Mech Des 126(5):903–908

    Article  Google Scholar 

  27. Gorla C, Concli F, Stahl K, Höhn B‑R, Michaelis K, Schultheiß H, Stemplinger J‑P (2012) CFD simulations of splash losses of a gearbox. Adv Tribol:1–10. doi:10.1155/2012/616923

    Google Scholar 

  28. Groenenboom PHL, Mettichi MZ, Gargouri Y (2015) Simulating Oil Flow for Gearbox Lubrication using Smoothed Particle Hydrodynamics. International Conference on Gears 2015, Munich. VDI, Munich

    Google Scholar 

  29. Marchesse] Y, Changenet C, Ville F, Velex P (2011) Investigations on CFD simulations for predicting windage power losses in spur gears. J Mech Des 133(2):Article ID 024501

    Google Scholar 

  30. Della Torre A et al (2013) Analysis of the Power Losses in Geared Transmissions – Measurements and CFD Calculations Based on Open Source Codes. Open Source CFD International Conference, Hamburg, 24., 25. Oct.

    Google Scholar 

  31. Concli F et al (2015) Churning power losses of ordinary gears: a new approach based on the internal fluid dynamics simulations. Lubr Sci 25(7):313–326

    Article  Google Scholar 

  32. Klier C, Berger L, Stock K (2015) New prospects for oil flow simulation in rotating spur-gear systems. International Conference on Gears, Munich. VDI,

  33. Qi F et al (2016) A CFD study of an electronic hydraulic power steering helical external gear pump: model development, validation and application. SAE Technical Paper, vol. 2016-01-1376.

    Google Scholar 

  34. Gorla C et al (2013) Hydraulic losses of gearbox: CFD analysis and experiments. Tribol Int 66:337–344

    Article  Google Scholar 

  35. Concli F, Gorla C, Stahl K, Höhn B‑R, Michaelis K, Schultheiß H, Stemplinger J‑P (2013) Load independent power losses of ordinary gears: numerical and experimental analysis. 5th World Tribology Congress, Torino. WTC,

  36. Höhn B‑R, Michaelis K, Otto HP (2011) Influence on no-load gear losses. Proc Ecotrib Converence 2:639–644

    Google Scholar 

  37. Concli F, Della Torre A, Gorla C, Montenegro G (2016) A New Integrated Approach for the Prediction of the Load Independent Power Losses of Gears: Development of a Mesh-Handling Algorithm to Reduce the CFD Simulation Time. Adv Tribol(2016):2957151. doi:10.1155/2016/2957151

    Google Scholar 

  38. Concli F (2013) Efficiency of gear transmissions and CFD analysis of the load independent power losses, Ph.D. Thesis. Politecnico di Milano, Milan

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Concli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Concli, F., Gorla, C. Windage, churning and pocketing power losses of gears: different modeling approaches for different goals. Forsch Ingenieurwes 80, 85–99 (2016). https://doi.org/10.1007/s10010-016-0206-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-016-0206-9

Keywords

Navigation