Skip to main content
Log in

In situ synthesis of Bi3+-doped δ-MnO2 cathode to enhance the cycle stability for aqueous zinc-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Bi3+-doped δ-MnO2 materials (BMX, X = 5, 10, 15) with long cycle life were obtained by an in situ electrochemical reaction using δ-MnO2 and Bi2O3 mixture as raw materials. According to the material characterization and electrochemical performance test, it indicates that the bismuth is evenly incorporated into δ-MnO2. Among these obtained materials, BM10 exhibits the best performance. The specific capacity of the BM10 cathode is maintained at 108 mAh g−1 after 5000 cycles at a current density of 3 A g−1 and remains at 70 mAh g−1 after 9000 cycles without attenuation at a high current density of 10 A g−1. The Bi3+ modification mechanism is also revealed by the electrochemical kinetic and chemical analyses, which can effectively stabilize the layered structure of δ-MnO2, increase the diffusion rate of Zn2+ and H+, and inhibit the dissolution of Mn2+ formed by the disproportionation reaction of Mn3+. The preparation process of manganese-based materials with excellent performance is easy to handle and has large-scale production and application prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Luo JY, Xia YY (2007) Aqueous lithium-ion battery LiTi2(PO4)3/LiMn2O4 with high power and energy densities as well as superior cycling stability. Adv Funct Mater 17:3877–3884

    Article  CAS  Google Scholar 

  2. Suo L, Borodin O, Sun W, Fan X, Yang C, Wang F, Gao T, Ma Z, Schroeder M, Cresce A, Russell SM, Armand M, Angell A, Xu K, Wang C (2016) Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte. Angew Chem 55:7136–7141

    Article  CAS  Google Scholar 

  3. Ni J, Li L (2020) Cathode architectures for rechargeable ion batteries: progress and perspectives. Adv Mater 32:2000288

    Article  CAS  Google Scholar 

  4. Chen Y, Cui Y, Wang S, Xiao Y, Niu J, Huang J, Wang F, Chen S (2023) Durable and adjustable interfacial engineering of polymeric electrolytes for both stable Ni-rich cathodes and high-energy metal anodes. Advanced Materials n/a: 2300982

  5. Zhao M, Lv Y, Zhao S, Xiao Y, Niu J, Yang Q, Qiu J, Wang F, Chen S (2022) Simultaneously stabilizing both electrodes and electrolytes by a self-separating organometallics interface for high-performance zinc-ion batteries at wide temperatures. Adv Mater 34:e2206239

    Article  PubMed  Google Scholar 

  6. Zhao M, Rong J, Huo F, Lv Y, Yue B, Xiao Y, Chen Y, Hou G, Qiu J, Chen S (2022) Semi-immobilized ionic liquid regulator with fast kinetics toward highly stable zinc anode under -35 to 60 °C. Adv Mater 34:e2203153

    Article  PubMed  Google Scholar 

  7. Barthelmie RJ, Pryor SC (2014) Potential contribution of wind energy to climate change mitigation. Nat Clim Change 4:684–688

    Article  CAS  Google Scholar 

  8. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303

    Article  CAS  PubMed  Google Scholar 

  9. Kim H, Hong J, Park K-Y, Kim H, Kim S-W, Kang K (2014) Aqueous rechargeable Li and Na ion batteries. Chem Rev 114:11788–11827

    Article  CAS  PubMed  Google Scholar 

  10. Lehtola T, Zahedi A (2019) Solar energy and wind power supply supported by storage technology: a review. Energy Technol Assess 35:25–31

    Google Scholar 

  11. Hill LI, Verbaere A (2004) On the structural defects in synthetic MnO2. J Solid State Chem 177:4706–4723

    Article  CAS  Google Scholar 

  12. Liu M, Zhao Q, Liu H, Yang J, Chen X, Yang L, Cui Y, Huang W, Zhao W, Song A, Wang Y, Ding S, Song Y, Qian G, Chen H, Pan F (2019) Tuning phase evolution of β-MnO2 during microwave hydrothermal synthesis for high-performance aqueous Zn ion battery. Nano Energy 64:103942

    Article  CAS  Google Scholar 

  13. Wang X, Xu L, Chang Y, Song H, Hou W, Zhang Y, Li Y, Zhu S, Xiao Y, Han G (2023) Electrodeposition of polypyrrole for high-performance zinc ion battery. Journal of Solid State Electrochemistry

  14. Alfaruqi MH, Gim J, Kim S, Song J, Jo J, Kim S, Mathew V, Kim J (2015) Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode. J Power Sources 288:320–327

    Article  CAS  Google Scholar 

  15. Alfaruqi MH, Mathew V, Song J, Kim S, Islam SM, Pham DT, Jo J, Kim S, Baboo JP, Xiu Z, Lee KS, Sun YK, Kim J (2017) Electrochemical zinc intercalation in lithium vanadium oxide: a high-capacity zinc-ion battery cathode. Chem Mater 29:1684–1694

    Article  CAS  Google Scholar 

  16. Jia X, Liu C, Neale ZG, Yang J, Cao G (2020) Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem Rev 120:7795–7866

    Article  CAS  PubMed  Google Scholar 

  17. Zhang N, Cheng F, Liu J, Wang L, Long X, Liu X, Li F, Chen J (2017) Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat Commun 8:405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alfaruqi MH, Gim J, Kim S, Song J, Pham DT, Jo J, Xiu Z, Mathew V, Kim J (2015) A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochem Commun 60:121–125

    Article  CAS  Google Scholar 

  19. Jiang YQ, Ba DL, Li YY, Liu JP (2020) Noninterference revealing of “layered to layered” zinc storage mechanism of δ-MnO2 toward neutral Zn–Mn batteries with superior performance. Adv Sci 7:1902795

    Article  CAS  Google Scholar 

  20. Alfaruqi MH, Islam S, Putro DY, Mathew V, Kim S, Jo J, Kim S, Sun Y-K, Kim K, Kim J (2018) Structural transformation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery. Electrochim Acta 276:1–11

    Article  CAS  Google Scholar 

  21. Corpuz RD, De Juan LMZ, Praserthdam S, Pornprasertsuk R, Yonezawa T, Nguyen MT, Kheawhom S (2019) Annealing induced a well-ordered single crystal δ-MnO2 and its electrochemical performance in zinc-ion battery. Sci Rep 9:15107

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ji J, Wan H, Zhang B, Wang C, Gan Y, Tan Q, Wang N, Yao J, Zheng Z, Liang P, Zhang J, Wang H, Tao L, Wang Y, Chao D, Wang H (2021) Co2+/3+/4+-regulated electron state of Mn-O for superb aqueous zinc-manganese oxide batteries. Adv Energy Mater 11:2003203

    Article  CAS  Google Scholar 

  23. Tan J, Feng T, Hu S, Liang Y, Zhang S, Xu Z, Zhou H, Wu M (2022) In situ synthesis of a self-supported MnO2-based cathode for high-performance zinc-ion batteries by K+ pre-intercalation. Appl Surface Science 604:154578

    Article  CAS  Google Scholar 

  24. Ma Y, Xu M, Liu R, Xiao H, Liu Y, Wang X, Huang Y, Yuan G (2022) Molecular tailoring of MnO2 by bismuth doping to achieve aqueous zinc-ion battery with capacitor-level durability. Energy Storage Mater 48:212–222

    Article  Google Scholar 

  25. Khamsanga S, Pornprasertsuk R, Yonezawa T, Mohamad AA, Kheawhom S (2019) δ-MnO2 nanoflower/graphite cathode for rechargeable aqueous zinc ion batteries. Sci Rep 9:8441

    Article  PubMed  PubMed Central  Google Scholar 

  26. Im D, Manthiram A (2003) Role of bismuth and factors influencing the formation of Mn3O4 in rechargeable alkaline batteries based on bismuth-containing manganese oxides. J Electrochem Soc 150:A68

    Article  CAS  Google Scholar 

  27. Kannan AM, Bhavaraju S, Prado F, Raja MM, Manthiram A (2002) Characterization of the bismuth-modified manganese dioxide cathodes in rechargeable alkaline cells. J Electrochem Soc 149:A483

    Article  CAS  Google Scholar 

  28. Yadav GG, Gallaway JW, Turney DE, Nyce M, Huang J, Wei X, Banerjee S (2017) Regenerable Cu-intercalated MnO2 layered cathode for highly cyclable energy dense batteries. Nat Commun 8:14424

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yadav GG, Wei X, Gallaway JW, Chaudhry Z, Shin A, Huang J, Yakobov R, Nyce M, Vanderklaauw N, Banerjee S (2017) Rapid electrochemical synthesis of δ-MnO2 from γ-MnO2 and unleashing its performance as an energy dense electrode. Mater Today Energy 6:198–210

    Article  Google Scholar 

  30. Zhao G, Li J, Jiang L, Dong H, Wang X, Hu W (2012) Synthesizing MnO2 nanosheets from graphene oxide templates for high performance pseudosupercapacitors. Chem Sci 3:433–437

    Article  CAS  Google Scholar 

  31. Kataoka F, Ishida T, Nagita K, Kumbhar V, Yamabuki K, Nakayama M (2020) Cobalt-doped layered MnO2 thin film electrochemically grown on nitrogen-doped carbon cloth for aqueous zinc-ion batteries. ACS Appl Energy Mater 45:2574

    Google Scholar 

  32. Guo C, Tian S, Chen B, Liu H, Li J (2020) Constructing α-MnO2@PPy core-shell nanorods towards enhancing electrochemical behaviors in aqueous zinc ion battery. Mater Letters 262:127180

    Article  CAS  Google Scholar 

  33. Pan H, Shao Y, Yan P, Cheng Y, Han KS, Nie Z, Wang C, Yang J, Li X, Bhattacharya P, Mueller KT, Liu J (2016) Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat Energy 1:16039

    Article  CAS  Google Scholar 

  34. Sun W, Wang F, Hou S, Yang C, Fan X, Ma Z, Gao T, Han F, Hu R, Zhu M, Wang C (2017) Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J Am Chem Soc 139:9775–9778

    Article  CAS  PubMed  Google Scholar 

  35. Ma Y, Xu M, Liu R, Xiao H, Liu Y, Wang X, Huang Y, Yuan G (2022) Molecular tailoring of MnO2 by bismuth doping to achieve aqueous zinc-ion battery with capacitor-level durability. Energy Storage Materials 48:212–222

    Article  Google Scholar 

  36. Liu N, Wu X, Yin Y, Chen A, Zhao C, Guo Z, Fan L, Zhang N (2020) Constructing the efficient ion diffusion pathway by introducing oxygen defects in Mn2O3 for high-performance aqueous zinc-ion batteries. ACS Appl Mater Interfaces 12:28199–28205

    Article  CAS  PubMed  Google Scholar 

  37. Wang F, Yu F, Wang X, Chang Z, Fu L, Zhu Y, Wen Z, Wu Y, Huang W (2016) Aqueous rechargeable zinc/aluminum ion battery with good cycling performance. ACS Appl Mater Interfaces 8(14):9022–9029

    Article  CAS  PubMed  Google Scholar 

  38. Tang B, Fang G, Zhou J, Wang L, Lei Y, Wang C, Lin T, Tang Y, Liang S (2018) Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy 51:579–587

    Article  CAS  Google Scholar 

  39. Wang D, Wang L, Liang G, Li H, Liu Z, Tang Z, Liang J, Zhi C (2019) A superior δ-MnO2 cathode and a self-healing Zn-δ-MnO2 battery. ACS Nano 13:10643–10652

    Article  CAS  PubMed  Google Scholar 

  40. Wang J, Wang J-G, Liu H, Wei C, Kang F (2019) Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries. J Mater Chem A 7:13727–13735

    Article  CAS  Google Scholar 

  41. Yang Y, Tang Y, Fang G, Shan L, Guo J, Zhang W, Wang C, Wang L, Zhou J, Liang S (2018) Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ Sci 11:3157–3162

    Article  CAS  Google Scholar 

  42. Gao X, Wu H, Li W, Tian Y, Zhang Y, Wu H, Yang L, Zou G, Hou H, Ji X (2020) H+-insertion boosted α-MnO2 for an aqueous Zn-ion battery. Small 16:1905842

    Article  CAS  Google Scholar 

  43. Lei Z, Sun D, Lin S, Yu D, Li Y (2021) Preparation of α-MnO2 nanorods/porous carbon cathode for aqueous zinc-ion batteries. Acta Chim Sinica 79:200–207

    Article  Google Scholar 

  44. Liu Y, Qiao Y, Lou X, Zhang X, Zhang W, Huang Y (2016) Hollow K0.27MnO2 nanospheres as cathode for high-performance aqueous sodium ion batteries. ACS Appl Mater Interfaces 8:14564–14571

    Article  CAS  PubMed  Google Scholar 

  45. Gou L, Mou KL, Fan XY, Zhao MJ, Wang Y, Xue D, Li DL (2020) Mn2O3/Al2O3 cathode material derived from a metal-organic framework with enhanced cycling performance for aqueous zinc-ion batteries. Dalton Trans 49:711–718

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the special scientific research project for local service, Shaanxi province education department (No. 22JE001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Gou or Xiaoyong Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 812 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gou, L., Yang, Y., Zhang, Y. et al. In situ synthesis of Bi3+-doped δ-MnO2 cathode to enhance the cycle stability for aqueous zinc-ion batteries. J Solid State Electrochem 27, 1443–1450 (2023). https://doi.org/10.1007/s10008-023-05501-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05501-1

Keywords

Navigation