Skip to main content

Advertisement

Log in

Nitrogen-sulfur co-doped FeS/C nanofibers for high-performance lithium/potassium storage

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The nitrogen-sulfur co-doped FeS/C nanofibers (N, S-FeS/C) have been prepared by electrospinning followed by carbonization and sulfuration at high temperature. At the same time, the effect of sulfuration temperature on the lithium and potassium storage properties of N, S-FeS/C are investigated. The N, S co-doped carbon layer can suppress the agglomeration and volume expansion of FeS particles during the charge–discharge process, coupled with good electronic conductivity of carbon matrix and good crystallinity of FeS particles at optimized sulfuration temperature. And the N, S-FeS/C obtained by sulfuration at 600 °C exhibits outstanding electrochemical performance in lithium-ion batteries (LIBs) and potassium-ion batteries (PIBs), which shows high reversible capacities of 653 mAh g−1 at 1000 mA g−1 after 250 cycles in LIBs and 270 mAh g−1 after 190 cycles at 20 mA g−1 in PIBs. The N, S-FeS/C are promising anode materials for both LIBs and PIBs that could be demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li Z, Li H, Cao S, Guo W, Liu JL et al (2023) Reversible anionic redox and spinel-layered coherent structure enable high-capacity and long-term cycling of Li-rich cathode. Chem Eng J 452:139041. https://doi.org/10.1016/j.cej.2022.139041

  2. Zou CF, Yang L, Luo KL, Liu L, Tao XY et al (2022) In situ formed protective layer: toward a more stable interface between the lithium metal anode and Li6PS5Cl solid electrolyte. ACS Appl Energ Mater 5(7):8428–8436. https://doi.org/10.1021/acsaem.2c00971

    Article  CAS  Google Scholar 

  3. Li Z, Cao S, Xie X, Wu C, Li H et al (2021) Boosting electrochemical performance of lithium-rich manganese-based cathode materials through a dual modification strategy with defect designing and interface engineering. ACS Appl Mater Interfaces 13:53974–53985. https://doi.org/10.1021/acsami.1c16743

    Article  CAS  PubMed  Google Scholar 

  4. Chen J, Luo YL, Zhang WC, Qiao Y, Cao XX et al (2020) Tuning interface bridging between MoSe2 and three-dimensional carbon framework by incorporation of MoC intermediate to boost lithium storage capability. Nano-Micro Lett 12:171. https://doi.org/10.1007/s40820-020-00511-4

    Article  CAS  Google Scholar 

  5. Xia J, Liu L, Jamil S, Xie JJ, Yan HX et al (2019) Free-standing SnS/C nanofiber anodes for ultralong cycle-life lithium-ion batteries and sodium-ion batteries. Energy Storage Mater 17:1–11. https://doi.org/10.1016/j.ensm.2018.08.005

    Article  Google Scholar 

  6. Xia J, Zhang N, Yang YJ, Chen X, Wang X et al (2022) Lanthanide contraction builds better high-voltage LiCoO2 batteries. Adv Funct Mater 2212869. https://doi.org/10.1002/adfm.202212869

  7. Zheng S, Cheng SQ, Xiao SH, Hu LZ, Chen Z et al (2020) Partial replacement of K by Rb to improve electrochemical performance of K3V2(PO4)3 cathode material for potassium-ion batteries. J Alloy Compd 815:152379. https://doi.org/10.1016/j.jallcom.2019.152379

  8. Zou C, Yang L, Zang Z, Tao X, Yi L et al (2023) LiAlO2-coated LiNi0.8Co0.1Mn0.1O2 and chlorine-rich argyrodite enabling high-performance all-solid-state lithium batteries at suitable stack pressure. Ceram Int 49:443–449. https://doi.org/10.1016/j.ceramint.2022.09.010

    Article  CAS  Google Scholar 

  9. Ge JM, Fan L, Rao AM, Zhou J (2022) Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries. Nat Sustain 5:225–234. https://doi.org/10.1038/s41893-021-00810-7

    Article  Google Scholar 

  10. Hu YY, Fan L, Rao AM, Yu WJ, Zhuoma CX et al (2022) Cyclic-anion salt for high-voltage stable potassium metal batteries. Natl Sci Rev 134. https://doi.org/10.1093/nsr/nwac134

  11. Yang T, Liu JW, Yang DX, Mao QN, Zhong JS et al (2020) Bi2Se3@C rod-like architecture with outstanding electrochemical properties in lithium/potassium-ion batteries. ACS Appl Energ Mater 11073–11081. https://doi.org/10.1021/acsaem.0c02056

  12. Yang FH, Goo H, Hao JN, Zhang SL, Li P et al (2019) Yolk-shell structured FeP@C Nanoboxes as Advanced Anode Materials for Rechargeable Lithium-/Potassium-Ion Batteries. Adv Funct Mater 29(16):1808291. https://doi.org/10.1002/adfm.201808291

    Article  CAS  Google Scholar 

  13. Su D, Pei Y, Liu L, Liu ZX, Liu JF et al (2021) Wire-in-wire TiO2/C nanofibers free-standing anodes for li-ion and k-ion batteries with long cycling stability and high capacity. Nano-Micro Lett 13:107. https://doi.org/10.1007/s40820-021-00632-4

    Article  CAS  Google Scholar 

  14. Hu LZ, Zheng S, Cheng SQ, Chen Z, Huang B et al (2019) Micro/nano-structured Ag coated VPO4/C as a high-performance anode material for lithium-ion batteries. Mater Lett 246:40–44. https://doi.org/10.1016/j.matlet.2019.03.022

    Article  CAS  Google Scholar 

  15. Hu LZ, Zheng S, Cheng SQ, Chen Z, Huang B et al (2019) CrPO4/C composite as a novel anode material for lithium-ion batteries. J Power Sources 441:227180. https://doi.org/10.1016/j.jpowsour.2019.227180

  16. Liu Y, He DL, Tan QW, Wan Q, Han K et al (2019) A synergetic strategy for an advanced electrode with Fe3O4 embedded in a 3D N-doped porous graphene framework and a strong adhesive binder for lithium/potassium ion batteries with an ultralong cycle lifespan. J Mater Chem A 7:19430–19441. https://doi.org/10.1039/C9TA06304H

    Article  CAS  Google Scholar 

  17. Liang T, Wang HW, Wang R, He BB, Gong YS et al (2021) Nitrogen-doped carbon nanotube-buffered FeSe2 anodes for fast-charging and high-capacity lithium storage. Electrochim Acta 389:138686. https://doi.org/10.1016/j.electacta.2021.138686

  18. Li GH, Cao SY, Fu LK, Wan SY, Liu QM (2021) A two-step hydrothermal synthesis of TiO2/C/FeS2 composite as high performance anode for lithium ion batteries. Electrochim Acta 386:9. https://doi.org/10.1016/j.electacta.2021.138470

    Article  CAS  Google Scholar 

  19. Du YC, Weng WS, Zhang ZZ, He YA, Xu JY et al (2021) Candied-haws-like architecture consisting of FeS2@C Core-shell particles for efficient potassium storage. ACS Mater Lett 3:356–363. https://doi.org/10.1021/acsmaterialslett.1c00129

    Article  CAS  Google Scholar 

  20. Shen DY, Rao AM, Zhou J, Lu BA (2022) High-potential cathodes with nitrogen active centres for quasi-solid proton-ion batteries. Angew Chem Int Ed 22/2022. https://doi.org/10.1002/anie.202201972

  21. Xiao XX (2022) The direct use of enzymatic biofuel cells as functional bioelectronics. Esci 2(1):1–9. https://doi.org/10.1016/j.esci.2021.12.005

    Article  Google Scholar 

  22. Wang J, Li YS, Liu P, Wang F, Yao QR et al (2021) Green large-scale production of N/O-dual doping hard carbon derived from bagasse as high-performance anodes for sodium-ion batteries. J Cent South Univ 28:361–369. https://doi.org/10.1007/s11771-021-4608-y

    Article  CAS  Google Scholar 

  23. Lin X, Yang Z, Guo A, Liu D (2019) Facile synthesis of FeS@C Particles toward high-performance anodes for lithium-ion batteries. Nanomater (Basel) 9(10):1467. https://doi.org/10.3390/nano9101467

    Article  CAS  Google Scholar 

  24. Chen S, Fan L, Xu L, Liu Q, Qin Y et al (2017) 100 K cycles: Core-shell H-FeS@C based lithium-ion battery anode. Energy Storage Mater 8:20–27. https://doi.org/10.1016/j.ensm.2017.03.011

    Article  CAS  Google Scholar 

  25. Li X, Wang H, Zhang W, Feng Y, Ma J (2020) S-Doped Carbon-Coated FeS2/C@C Nanorods for Potassium Storage. Acta Metall Sin (Engl Lett) 34:321–328. https://doi.org/10.1007/s40195-020-01050-y

    Article  CAS  Google Scholar 

  26. Li GY, Kou MY, Tu JG, Luo YW, Wang MY et al (2021) Coordination interaction boosts energy storage in rechargeable Al battery with a positive electrode material of CuSe. Chem Eng J 421:127792. https://doi.org/10.1016/j.cej.2020.127792

  27. Liu P, Yi HT, Zheng SY, Li ZP, Zhu KJ et al (2021) Regulating deposition behavior of sodium ions for dendrite-free sodium-metal anode. Adv Energy Mater 36/2021. https://doi.org/10.1002/aenm.202101976

  28. Bu FX, Xiao PT, Chen JD, Aboud MFA, Shakir I et al (2018) Rational design of three-dimensional graphene encapsulated core-shell FeS@carbon nanocomposite as a flexible high-performance anode for sodium-ion batteries. J Mater Chem A 6:6414–6421. https://doi.org/10.1039/C7TA11111H

    Article  CAS  Google Scholar 

  29. Das D, Hussain AMP (2022) Role of capping agents in the structural and optical properties of heterostructured type-I and type-II core/shell nanoparticles. Appl Phys A 128:650. https://doi.org/10.1007/s00339-022-05783-8

    Article  CAS  Google Scholar 

  30. Hu Z, Zhang K, Zhu ZQ, Tao ZL, Chen J (2015) FeS2 microspheres with an ether-based electrolyte for high-performance rechargeable lithium batteries. J Mater Chem A 3:12898–12904. https://doi.org/10.1039/C5TA02169C

    Article  CAS  Google Scholar 

  31. Li GY, Li ZH, Xiao X, An YL, Wang W et al (2019) An ultrahigh electron-donating quaternary-N-doped reduced graphene oxide@carbon nanotube framework: a covalently coupled catalyst support for enzymatic bioelectrodes. J Mater Chem A 7:11077–11085. https://doi.org/10.1039/C9TA00771G

    Article  CAS  Google Scholar 

  32. Cho JS, Park JS, Kang YC (2017) Porous FeS nanofibers with numerous nanovoids obtained by Kirkendall diffusion effect for use as anode materials for sodium-ion batteries. Nano Res 10:897–907. https://doi.org/10.1007/s12274-016-1346-9

    Article  CAS  Google Scholar 

  33. Liu YZ, Zhong WT, Yang CH, Pan QC, Li YP et al (2018) Direct synthesis of FeS/N-doped carbon composite for high-performance sodium-ion batteries. J Mater Chem A 6:24702–24708. https://doi.org/10.1039/C8TA08562E

    Article  CAS  Google Scholar 

  34. Li GY, Ren GM, Wang W, Hu ZQ (2021) Rational design of N-doped CNTs@C3N4 network for dual-capture of biocatalysts in enzymatic glucose/O2 biofuel cells. Nanoscale 13:7774–7782. https://doi.org/10.1039/D1NR00407G

    Article  CAS  PubMed  Google Scholar 

  35. Haridas AK, Heo J, Liu Y, Ahn HJ, Zhao XH et al (2019) Boosting high energy density lithium-ion storage via the rational design of an FeS-incorporated sulfurized polyacrylonitrile fiber hybrid cathode. ACS Appl Mater Interface 11:29924–29933. https://doi.org/10.1021/acsami.9b09026

    Article  CAS  PubMed  Google Scholar 

  36. Xu C, Zeng Y, Rui XH, Xiao N, Zhu JX et al (2012) Controlled soft-template synthesis of ultrathin C@FeS nanosheets with high-li-storage performance. ACS Nano 6:4713–4721. https://doi.org/10.1021/nn2045714

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Y, Zhou Q, Zhu JX, Yan QY, Dou SX et al (2017) Nanostructured metal chalcogenides for energy storage and electrocatalysis. Adv Funct Mater 27(35):1702317. https://doi.org/10.1002/adfm.201702317

    Article  CAS  Google Scholar 

  38. Kim JH, Park GD, Kang YC (2021) Synthesis of yolk-shell-structured iron monosulfide-carbon microspheres and understanding of their conversion reaction for potassium-ion storage. Int J Energy Res 45:14910–14919. https://doi.org/10.1002/er.6767

    Article  CAS  Google Scholar 

  39. Yan Z, Liu J, Wei H, Yang X, Yao Y et al (2021) Embedding FeS nanodots into carbon nanosheets to improve the electrochemical performance of anode in potassium ion batteries. J Colloid Interface Sci 593:408–416. https://doi.org/10.1016/j.jcis.2021.03.015

    Article  CAS  PubMed  Google Scholar 

  40. Zhang S, Wang G, Wang B, Wang J, Bai J et al (2020) 3D carbon nanotube network bridged hetero-structured Ni-Fe-S Nanocubes toward high-performance lithium, sodium, and potassium storage. Adv Funct Mater 30(24):2001592. https://doi.org/10.1002/adfm.202001592

    Article  CAS  Google Scholar 

  41. Jin QZ, Li W, Wang KL, Feng PY, Li HM et al (2019) Experimental design and theoretical calculation for sulfur-doped carbon nanofibers as a high performance sodium-ion battery anode. J Mater Chem A 7:10239–10245. https://doi.org/10.1039/C9TA02107H

    Article  CAS  Google Scholar 

  42. Liu Y, Fan FF, Wang JW, Liu Y, Chen HL et al (2014) In situ transmission electron microscopy study of electrochemical sodiation and potassiation of carbon nanofibers. Nano Lett 14:3445–3452. https://doi.org/10.1021/nl500970a

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported financially by the National Natural Science Foundation of China (Grant No.52072325), the Key Research Foundation of Education Bureau of Hunan Province, China (Grant No.20A486), Postgraduate Scientific Research Innovation Project of Hunan Province (Grant No.QL20210147, CX20210633), Postgraduate Scientific Research Innovation Project of Xiangtan University (Grant No.XDCX2021B149), Hunan 2011 Collaborative Innovation Center of Chemical Engineering & Technology with Environmental Benignity and Effective Resource Utilization, Program for Innovative Research Cultivation Team in University of Ministry of Education of China (1337304), and the 111 Project (B12015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Z., Zhang, W., Liu, G. et al. Nitrogen-sulfur co-doped FeS/C nanofibers for high-performance lithium/potassium storage. J Solid State Electrochem 27, 1373–1381 (2023). https://doi.org/10.1007/s10008-023-05406-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05406-z

Keywords

Navigation