Skip to main content
Log in

Use of poly[ionic liquid] as a conductive binder in lithium ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In the present work, we studied the performance of different new binders based on poly[ionic liquids] (POILs) using a well-known negative electrode material such as Li4Ti5O12 (LTO) compound and ionic liquids (ILs) as solvents. We used an IL formed by Pip1,4Tf2N with N-butyl-N-methyl piperidinium (Pip1,4) as the cation and bis(trifluoromethanesulfonyl)imide (Tf2N) as the anion. We tested two POILs as binders, composed of either LiTf2N, Pip1,4Tf2N, and PVDF or poly[diallyldimethylammonium]Tf2N (PDDA) as the polymer precursors (PVDF-IL and PDDA-IL, respectively). The best Li+ transport number as well as the smallest contact angle (electrolyte membrane) was obtained for the PDDA-IL polymer. The swelling effect better facilitates impregnation than the other polymers. The LTO/PDDA-IL combination showed the best specific capacity, 70 mAh g−1, and a stable prolonged cycling. We identified the TiIV/TiIII redox reversible processes by cyclic voltammetry experiments and the differential capacity profiles. Additionally, we measured the Li+ diffusion coefficient to be approximately 10−12 cm2 s−1. When different binders and IL-solvents are employed in a typical LTO cell, we demonstrated that the factors that determine cell performance are the ionic conductivity and the swelling effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wolfart F, Hryniewicz BM, Góes MS, Corrêa CM, Torresi RM, Minadeo MAOS, Córdoba de Torresi SI, Oliveira RD, Marchesi LF, Vidotti M (2017) J Solid State Electrochem 21(9):2489–2515

    Article  CAS  Google Scholar 

  2. Armand M, Tarascon JM (2008) Nature 451(7179):652–657

    Article  CAS  PubMed  Google Scholar 

  3. Sun X, Radovanovic PV, Cui B (2015) New J. Chem 39:38–63

    Article  CAS  Google Scholar 

  4. Balducci A (2017) Top Curr Chem 375:1–27

    Article  CAS  Google Scholar 

  5. Nitta N, Wu F, Lee JT, Yushin G (2015) Mater Today 18(5):252–264

    Article  CAS  Google Scholar 

  6. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Energy Environ Sci 4:3243–3262

    Article  CAS  Google Scholar 

  7. Scrosati JHB, Abraham KM, Schalkwijk W (eds) (2013) Lithium batteries, 1st edn. Wiley, New Jeresey

    Google Scholar 

  8. Appetecchi GB, Scaccia S, Tizzani C, Alessandrini F, Passerini S (2006) J Electrochem Soc 153(9):A1685–A1691

    Article  CAS  Google Scholar 

  9. Martins VL, Sanchez-Ramirez N, Ribeiro MCC, Torresi RM (2015) Phys Chem Chem Phys 17(35):23041–23051

    Article  CAS  PubMed  Google Scholar 

  10. Robledo CB, Thomas JE, Luque G, Leiva EPM, Cámara O, Barraco D, Visintin A (2014) Electrochim Acta 140:160–167

    Article  CAS  Google Scholar 

  11. Peled E, Tow DB, Merson A, Gladkich A, Burstein L, Golodnitsky D (2001) J Power Sources 98:52–57

    Article  Google Scholar 

  12. Zhuang GV, Xu K, Jow TR, Ross PN Jr (2004) Electrochem Solid-State Lett 7(8):A224–A227

    Article  CAS  Google Scholar 

  13. Yuan T, Tan Z, Ma C, Yang J, Ma ZF, Zheng S (2017) Adv Energy Mater 7(12):1601625–1601650

    Article  CAS  Google Scholar 

  14. Odziomek M, Chaput F, Rutkowska A, Świerczek K, Olszewska D, Sitarz M, Lerouge F, Parola S (2017) Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries. Nat Commun. https://doi.org/10.1038/ncomms15636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun X, Hegde M, Zhang Y, He M, Gu L, Wang Y, Shu J (2014) Int J Electrochem Sci 9:1583–1596

    Google Scholar 

  16. Sun L, Wang J, Jiang K, Fan S (2014) J Power Sources 248:265–272

    Article  CAS  Google Scholar 

  17. Singh DP, Mulder FM, Wagemaker M (2013) Electrochem Commun 35:124–127

    Article  CAS  Google Scholar 

  18. Sandhya CP, John B, Gouri C (2013) J Mater Sci 48(17):5827–5832

    Article  CAS  Google Scholar 

  19. He YB, Li B, Liu M, Zhang C, Lv W, Yang C, Li J, Du H, Zhang B, Kim JK, Kang F (2012) Sci Rep 2(1):913–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pont AL, Marcilla R, De Meatza I, Grande H, Mecerreyes D (2009) J Power Sources 188(2):558–563

    Article  CAS  Google Scholar 

  21. Benedetti TM, Torresi RM (2013) Langmuir 29(50):15589–15595

    Article  CAS  PubMed  Google Scholar 

  22. Martins VL, Rennie AJR, Lesowiec J, Torresi RM, Hall PJ (2017) J Electrochem Soc 164(13):A3253–A3258

    Article  CAS  Google Scholar 

  23. Pappenfus TM, Henderson WA, Owens BB, Mann KR, Smyrl WH (2004) J Electrochem Soc 151:209–215

    Article  CAS  Google Scholar 

  24. Chauque S, Oliva FY, Visintin A, Barraco D, Leiva EPM, Cámara OR (2017) J Electroanal Chem 799:142–155

    Article  CAS  Google Scholar 

  25. Bazito FFC, Kawano Y, Torresi RM (2007) Electrochim Acta 52(23):6427–6437

    Article  CAS  Google Scholar 

  26. Bard AJ, Faulkner LR, Swain E, Robey C (eds) (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  27. Bruce PG, Evans J, Vincent CA (1988) Solid State Ionics 30:918–922

    Article  Google Scholar 

  28. Fernicola A, Croce F, Scrosati B, Watanabe T, Ohno H (2007) J Power Sources 174(1):342–348

    Article  CAS  Google Scholar 

  29. Yoon H, Howlett PC, Best AS, Forsyth M, Macfarlane DR (2013) J Electrochem Soc 160:1629–1637

    Article  CAS  Google Scholar 

  30. Ogihara W, Washiro S, Nakajima H, Ohno H (2006) Electrochim Acta 51(13):2614–2619

    Article  CAS  Google Scholar 

  31. Thompson H (1979) J Electrochem Soc 126(4):608–616

    Article  CAS  Google Scholar 

  32. Chauque S, Robledo CB, Leiva EPM, Oliva FY, Camara OR (2014) ECS Trans 63(1):113–128

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S. Chauque wishes to thank CONICET for the doctoral fellowship. This work was performed at the Instituto de Química of the Universidade de São Paulo in Brazil in collaboration with INFIQC/CONICET—Universidad Nacional de Córdoba and YPF-Tecnología, in Argentina. The authors also acknowledge FAPESP (15/26308-7) for funding.

Funding

This work was supported by Program BID-Foncyt (PICT-2015-1605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto M. Torresi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauque, S., Oliva, F.Y., Cámara, O.R. et al. Use of poly[ionic liquid] as a conductive binder in lithium ion batteries. J Solid State Electrochem 22, 3589–3596 (2018). https://doi.org/10.1007/s10008-018-4078-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4078-9

Keywords

Navigation