Skip to main content
Log in

Enhancement of antibacterial efficiency at silver electrodeposited on coconut shell activated carbon by modulating pulse frequency

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The natural antibacterial activity of silver represents an alternative to deal with the ever increasing pathogenic breakouts related with contaminated water resources. In this study, silver was deposited on the surface of activated carbon (AC) particles via pulsed electrodeposition (PED) employing an electrochemical reactor operating at fixed and fluidized bed regimes. Silver-coated activated carbon (Ag/AC) particles were prepared at different current pulse frequency values. Antimicrobial properties of the produced material were tested against two well-known foodborne pathogens, i.e., Escherichia coli O157:H7 and Salmonella typhimurium. The results demonstrate a strong influence of the applied current pulse frequency on both the bactericidal efficiency and the specific surface of silver deposited on the activated carbon. Antibacterial results demonstrate up to eight orders of magnitude decrease in the CFU cm−3 (colony-forming units per cm3) against both microorganisms in just 20 min contact time. Additional chronoamperometry transient data were fitted to the Scharifker-Hills nucleation model for the electrodeposition of silver at a rotating disk electrode, revealing an instantaneous nucleation growth processes. The Ag/AC particles were characterized by field emission scanning electron microscopy (FE-SEM), specific surface area (SBET), Raman spectroscopy, energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD), demonstrating the existence of crystalline phase formation of a preferential (200) plane growth with silver and silver oxide being present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Vannela R, Verma SK (2006) Cu2+ Removal and recovery by Spi SORB: batch stirred and up-flow packed bed columnar reactor systems. Bioprocess Biosyst Eng 29(1):7–17

    Article  CAS  Google Scholar 

  2. Jüttner K, Galla U, Schmieder H (2000) Electrochemical approaches to environmental problems in the process industry. Electrochim Acta 45:2575–2594

    Article  Google Scholar 

  3. Stankovic V (2007) Metal removal from effluents by electrowinning and a new designconcept in wastewater purificationtechnology. Chem Biochem Eng Q 21(1):33–45

  4. Chen G (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38:11–41

    Article  Google Scholar 

  5. Fenouillet B, Duverneuil P, Lacoste G, Pruksathor K (1998) Metal recovery in surface treatment units by using the 3PE reactor. Environ Eng Policy 3:191–194

    Article  Google Scholar 

  6. Balasubramanian A, Srikumar DS, Raja G, Saravanan G, Mohan S (2009) Effect of pulse parameter on pulsed electrodeposition of copper on stainless steel. Surf Eng 25:389–392

    Article  CAS  Google Scholar 

  7. Ghaemi M, Binder L (2002) Effects of direct and pulse current on electrodeposition of manganese dioxide. J Power Sources 111:248–254

    Article  CAS  Google Scholar 

  8. Youssef KM, Koch CC, Fedkiw PS (2004) Improved corrosion behavior of nanocrystalline zinc produced by pulse-current electrodeposition. Corros Sci 46:51–64

    Article  CAS  Google Scholar 

  9. Delphine SM, Jayachandran M, Sanjeeviraja C (2005) Pulsed electrodeposition and characterization of molybdenum diselenide thin film. Mater Res Bull 40:135–147

    Article  CAS  Google Scholar 

  10. Li L, Zhang Y, Li G, Zhang L (2003) A route to fabricate single crystalline bismuth nanowire arrays with different diameters. Chem Phys Lett 378:244–249

    Article  CAS  Google Scholar 

  11. Kim K, Kim M, Cho SM (2006) Pulsed electrodeposition of palladium nanowire arrays using AAO template Mater Chem Phys 96:278–282

    Article  CAS  Google Scholar 

  12. Nielsch K, Müller F, Li A, Gösele U (2000) Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition. Adv Mater 12:582–586

    Article  CAS  Google Scholar 

  13. Zhang W, Li W, Wang J, Qin C, Dai L (2010) Composites of polyvinyl alcohol and carbon nanotubes decorated with silver nanoparticles. Fiber Polym 11:1132–1136

    Article  CAS  Google Scholar 

  14. Marambio-Jones C, Hoek EM (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551

    Article  CAS  Google Scholar 

  15. Brody AL, Strupinsky ER, Kline LR (2001) Active packaging for food applications. CRC Press LLC, Florida

    Book  Google Scholar 

  16. Edwards-Jones V (2009) The benefits of silver in hygiene, personal care and healthcare. Lett Appl Microbiol 49:147–152

    Article  CAS  Google Scholar 

  17. Lansdown, ABG (2010) A pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices. Adv Pharmacol Sci 2010:16. https://doi.org/10.1155/2010/910686

  18. Rivero P, Urrutia A, Goicoech J, Ruiz Zamarreño C, Arregui F, Matías I (2011) An antibacterial coating based on a polymer/solgel hybrid matrix loaded with silver nanoparticles. Nanoscale Res Lett 6:305

    Article  Google Scholar 

  19. Kwakye-Awuah B, Williams C, Kenward MA, Radecka I (2008) Antimicrobial action and efficiency of silver-loaded zeolite X. J Appl Microbiol 104:1516–1524

    Article  CAS  Google Scholar 

  20. Drogat N, Granet R, Sol V, Memmi A, Saad N, Klein Koerkamp C, Bressollier P, Krausz P (2011) Antimicrobial silver nanoparticles generated on cellulose nanocrystals. J Nanopart Res 13:1557–1562

    Article  CAS  Google Scholar 

  21. Young Yoon K, Hoon Byeon J, Woo Park C, Hwang J (2008) Antimicrobial effect of silver particles on bacterial contamination of activated carbon fibers. Environ Sci Technol 42:1251–1255

    Article  Google Scholar 

  22. Martınez-Abad A, Ocio MJ, Lagaron JM (2014) Morphology, physical properties, silver release, and antimicrobial capacity of ionic silver-loaded poly(llactide) films of interest in food-coating applications. J Appl Polym Sci 131(21):41001

    Google Scholar 

  23. Shang K, Qiao Z, Sun B, Fan X, Ai S (2013) An efficient electrochemical disinfection of E. coli and S. aureus in drinking water using ferrocene–PAMAM–multiwalled carbon nanotubes–chitosan nanocomposite modified pyrolytic graphite electrode. J Solid State Electrochem 17:1685–1691

    Article  CAS  Google Scholar 

  24. Shi Z, Neoh KG, Kang ET (2007) Antibacterial and adsorption characteristics of activated carbon functionalized with quaternary ammonium moieties. Ind Eng Chem Res 46:439–445

    Article  CAS  Google Scholar 

  25. Tran QH, Nguyen VQ, Le A (2013) Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol 4:033001

    Article  Google Scholar 

  26. Zarcadas GM, Stergiou A, Papanastasiou G (2004) Silver electrodeposition from agno3 solutions containing organic additives: electrodeposition from binary water–methanol solvent systems in the presence of tartaric acid. J Appl Electrochem 34:607–615

    Article  Google Scholar 

  27. Barret EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380

    Article  Google Scholar 

  28. Ortíz-Ibarra H, Casillas N, Soto V, Barcena-Soto M, Torres-Vitela R, De la Cruz W, Gómez-Salazar S (2007) Surface characterization of electrodeposited silver on activated carbón for bactericidal purposes. J Colloid Interface Sci 314:562–571

    Article  Google Scholar 

  29. Diario Oficial de la Federación (1994) Norma Oficial Mexicana. NOM-114-SSA1-1994. Bienes y Servicios. “Métodopara la determinación de Salmonella en alimentos”. [in Spanish]

  30. U.S. Food and Drug Administration (2014) Bacteriological analytical manual online. http://www.fda.gov/food/foodscienceresearch/laboratorymethods/ucm2006949.htm Accessed 24 feb 2017

  31. Palomar-Pardavé M, Ramírez MT, González I, Serruya A, Scharifker BR (1996) Silver electrocrystallization on vitreous carbon from ammonium hydroxide solutions. J Electrochem Soc 143(5):1551–1558

    Article  Google Scholar 

  32. Lin ZB, Xie BG, Chen JS, Sun JJ, Chen GN (2009) Nucleation mechanism of silver during electrodeposition on a glassy carbón electrode from a cyanidefree bath with 2-hydroxypyridine as a complexing agent. J Electroanal Chem 633:207–211

    Article  CAS  Google Scholar 

  33. Vazquez CI, Lacconi GI (2013) Nucleation and growth of silver nanostructures onto HOPG electrodes in the presence of picolinic acid. J Electroanal Chem 691:42–50

    Article  CAS  Google Scholar 

  34. Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M (2001) Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J Power Sources 101:109–116

    Article  CAS  Google Scholar 

  35. Camacho JM, Oliva AI (2006) Surface and grain boundary contributions in the electrical resistivity of metallic nanofilms. Thin Solid Films 515:881–1885

    Article  Google Scholar 

  36. Radford GJW, Cox J, Wills RGA, Walsh FC (2008) Electrochemical characterisation of activated carbón particles used in redox flow battery electrodes. J Power Sources 185:1499–1504

    Article  CAS  Google Scholar 

  37. Papanastasiou G, Jannakoudakis D, Amblard J, Froment M (1985) Influence of tartaric acid on the electrodeposition silver from aqueous AgN03 solutions. J Appl Electrochem 15:71–76

    Article  CAS  Google Scholar 

  38. Oniciu L, Muresan L (1991) Some fundamental aspects of levelling and brightening in metal electrodeposition. J Appl Electrochem 21:565–574

    Article  CAS  Google Scholar 

  39. Reyes MD, Orozco-Messana J, Lima A, Camaratta R, Pascual M, Hernandez-Fenollosa M (2011) Electrochemical deposition mechanism for ZnO nanorods: diffusion coefficient and growth models. J Electrochem Soc 158(11):E107–E110

    Article  Google Scholar 

  40. Grujicic D, Pesic B (2002) Electrodeposition of copper: the nucleation mechanisms. Electrochim Acta 47:2901–2912

    Article  CAS  Google Scholar 

  41. Chandrasekar MS, Pushpavanam M (2008) Pulse and pulse reverse plating—Conceptual, advantages and applications. Electrochim Acta 53:3313–3322

    Article  CAS  Google Scholar 

  42. Chen L, Jing Q, Chen J, Wang B, Huang J, Liu Y (2013) Silver nanocrystals of various morphologies deposited on silicon wafer and their applications in ultrasensitive surface-enhanced Raman scattering. Mater Charact 85:48–56

    Article  CAS  Google Scholar 

  43. Liu J, Yang T, Li C, Dai J, Han Y (2015) Reversibly switching silver hierarchical structures via reaction kinetics. Sci Rep 5:14942

    Article  CAS  Google Scholar 

  44. Wang L, Li H, Tian J, Sun X (2010) Monodisperse, micrometer-scale, highly crystalline, nanotextured ag dendrites: rapid, large-scale, wetchemical synthesis and their application as SERS substrates. ACS Appl Mater Interfaces 11:2987–2991

    Article  Google Scholar 

  45. Yu W, Liu X, Chu H, Zhu G, Li J, Liu J, Niu L, Sun Z, Pan L (2015) Enhancement of visible light photocatalytic activity of Ag2O/F-TiO2composites. J Mol Catal A Chem 407:25–31

    Article  CAS  Google Scholar 

  46. Pan J, Sun Y, Wang Z, Wan P, Liua X, Fan M (2007) Nano silver oxide (AgO) as a super high charge/discharge rate cathode material for rechargeable alkaline batteries. J Mater Chem 17:4820–4825

    Article  CAS  Google Scholar 

  47. Gu W, Sevilla M, Magasinski A, Fuertes AB, Yushin G (2013) Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection. Energy Environ Sci 6:2465–2476

    Article  CAS  Google Scholar 

  48. Liu XM, Tang Y, Xu ES, Fitzgibbons TC, Larsen GS, Gutierrez HR, Tseng H, Yu M, Tsao C, Badding JV, Crespi VH, Lueking AD (2013) Evidence for ambient-temperature reversible catalytic hydrogenation in Pt-doped carbons. Nano Lett 13:137–141

    Article  CAS  Google Scholar 

  49. Madhu R, Veeramani V, Chen SM (2014) Heteroatom-enriched and renewable banana-stem-derived porous carbon for the electrochemical determination of nitrite in various water samples. Sci Rep 4:4679

    Article  Google Scholar 

  50. Cuesta A, Dhamelincourt P, Laureyns J, Martinez-Alonso A, Tascón JMD (1994) Raman microprobe studies on carbon materials. Carbon 32(8):1523–1532

    Article  CAS  Google Scholar 

  51. Waterhouse GIN, Bowmaker GA, Metson JB (2001) Oxidation of a polycrystalline silver foil by reaction with ozone. Appl Surf Sci 183:191–204

    Article  CAS  Google Scholar 

  52. Chandra Raju NR, Kumar KJ, Subrahmanyam A (2009) Physical properties of silver oxide thin films by pulsed laser deposition: effect of oxygen pressure during growth. J Phys D Appl Phys 42:135411

    Article  Google Scholar 

  53. Liping R, Weilin D, Xinli Y, Yong C, Zaiku X, Kangnian F (2006) Transformation of various oxygen species on the surface of electrolytic silver characterized by in situ raman spectroscopy. J Catal 27:115–118

    Google Scholar 

  54. Martina I, Wiesinger R, Jembrih-Simburger D, Schreiner M (2012) Micro-Raman characterisation of silver corrosion products: instrumental set up and reference database. e-Preserv Sci 9:1–8

    CAS  Google Scholar 

  55. Delgado K, Quijada R, Palma R, Palza H (2011) Polypropylene with embedded copper metal or copper oxide nanoparticles as a novel plastic antimicrobial agent. Lett Appl Microbiol 53:50–54

    Article  CAS  Google Scholar 

  56. Miyanaga S, Hiwara A, Yasuda H (2002) Preparation and high bacteriostatic action of the activated carbons possessing ultrafine silver particles. Sci Technol Adv Mater 3:103–109

    Article  CAS  Google Scholar 

  57. Chen S, Liu J, Zeng H (2005) Structure and antibacterial activity of silver-supporting activated carbon fibers. J Mater Sci 40:6223–6231

    Article  CAS  Google Scholar 

  58. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM (2011) Foodborne illness acquired in the United States—Unspecified agents. Emerg Infect Dis 17:7–15

    Article  Google Scholar 

  59. Rai MK, Deshmukh SD, Ingle AP, Gade AK (2012) Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112:841–852

    Article  CAS  Google Scholar 

  60. Lansdown ABG (2006) Silver in health care: antimicrobial effects and safety in use. Curr Probl Dermatol 33:17–34

    Article  CAS  Google Scholar 

  61. Azizi S, Ahmad MB, Hussein MZ, Ibrahim NA, Namvar F (2014) Preparation and properties of poly(vinyl alcohol)/chitosan blend bionanocomposites reinforced with cellulose nanocrystals/ZnO-Ag multifunctional nanosized filler. Int J Nanomedicine 9:1909–1917

    Article  Google Scholar 

  62. Akhavan O, Abdolahad M, Abdi Y, Mohajerzadeh S (2011) Silver nanoparticles within vertically aligned multi-wall carbon nanotubes with open tips for antibacterial purposes. J Mater Chem 21:387–393

    Article  CAS  Google Scholar 

  63. Yu B, Leung KM, Guo Q, Lau WM, Yang J (2011) Synthesis of Ag–TiO2 composite nano thin film for antimicrobial application. Nanotechnology 22:115603

    Article  Google Scholar 

  64. Lee JS, Murphy WL (2013) Functionalizing calcium phosphate biomaterials with antibacterial silver particles. Adv Mater 25:1173–1179

    Article  CAS  Google Scholar 

  65. Boonkaew B, Suwanpreuksa P, Cuttle L, Barber PM, Supaphol P (2014) Hydrogels containing silver nanoparticles for burn wounds show antimicrobial activity without cytotoxicity. J Appl Polym Sci 13:40215

  66. Cevallos-Cevallos JM, Gu G, Richardson SM, Hu J, Van Bruggen AHC (2014) Survival of Salmonella enterica Typhimurium in water amended with manure. J Food Prot 12:2035–2042

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector Ortiz-Ibarra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz-Ibarra, H., Torres-Vitela, R., Gómez-Salazar, S. et al. Enhancement of antibacterial efficiency at silver electrodeposited on coconut shell activated carbon by modulating pulse frequency. J Solid State Electrochem 22, 749–759 (2018). https://doi.org/10.1007/s10008-017-3795-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3795-9

Keywords

Navigation