Skip to main content

Advertisement

Log in

Effect of carbonaceous support between graphite oxide and reduced graphene oxide with anchored Co3O4 microspheres as electrode-active materials in a solid-state electrochemical capacitor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Hydrothermally synthesized Co3O4 microspheres were anchored to graphite oxide (GO) and thermally reduced graphene oxide (rGO) composites at different cobalt weight percentages (1, 10, and 100 wt%). The composite materials served as the active materials in bulk electrodes for two-electrode cell electrochemical capacitors (ECCs). GO/Co3O4–1 exhibited a high energy density of 35 W kg−1 with a specific capacitance (C sp) of 196 F g−1 at a maximum charge density of 1 A g−1. rGO/Co3O4-100 presented high specific power output values of up to 23.41 kW h kg−1 with linear energy density behavior for the charge densities applied between 0.03 and 1 A g−1. The composite materials showed Coulombic efficiencies of 96 and 93 % for GO/Co3O4–1 and rGO/Co3O4–100 respectively. The enhancement of capacitive performance is attributed to the oxygenated groups in the GO ECC and the specific area in the rGO ECC. These results offer an interesting insight into the type of carbonaceous support used for graphene derivative electrode materials in ECCs together with Co3O4 loading to improve capacitance performance in terms of specific energy density and specific power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157(1):11–27

    Article  CAS  Google Scholar 

  2. Conway BE (1999) Electrochemical supercapacitors : scientific fundamentals and technological applications. Springer, New York

    Book  Google Scholar 

  3. Ghosh A, Lee YH (2012) Carbon-based electrochemical capacitors. ChemSusChem 5(3):480–499

    Article  CAS  Google Scholar 

  4. Wang FX, Xiao SY, Hou YY, Hu CL, Liu LL, Wu YP (2013) Electrode materials for aqueous asymmetric supercapacitors. RSC Adv 3(32):13059–13084

    Article  CAS  Google Scholar 

  5. Jeong GH, Baek S, Lee S, Kim SW (2016) Metal oxide/graphene composites for supercapacitive electrode materials. Chemistry-an Asian Journal 11(7):949–964

    Article  CAS  Google Scholar 

  6. Xin Zhaoa HT, Zhub M (2009) Carbon nanosheets as the electrode material in supercapacitors. J Power Sources 194:1208–1212

    Article  Google Scholar 

  7. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113(30):13103–13107

    Article  CAS  Google Scholar 

  8. Thi Toan N, Van Hoa N, Deivasigamani RK, Kharismadewi D, Iwai Y, Shim J-J (2016) Facile synthesis of cobalt oxide/reduced graphene oxide composites for electrochemical capacitor and sensor applications. Solid State Sci 53:71–77

    Article  Google Scholar 

  9. Kumar N, Yu Y-C, Lu YH, Tseng TY (2016) Fabrication of carbon nanotube/cobalt oxide nanocomposites via electrophoretic deposition for supercapacitor electrodes. J Mater Sci 51(5):2320–2329

    Article  CAS  Google Scholar 

  10. Zhou F, Liu Q, Gu J, Zhang W, Zhang D (2015) A facile low-temperature synthesis of highly distributed and size-tunable cobalt oxide nanoparticles anchored on activated carbon for supercapacitors. J Power Sources 273:945–953

    Article  CAS  Google Scholar 

  11. Das B, Behm M, Lindbergh G, Reddy MV, Chowdari BVR (2015) High performance metal nitrides, MN (M = Cr, Co) nanoparticles for non-aqueous hybrid supercapacitors. Adv Powder Technol 26(3):783–788

    Article  CAS  Google Scholar 

  12. Krishnan SG, Reddy MV, Harilal M, Vidyadharan B, Misnon II, Rahim MHA, Ismail J, Jose R (2015) Characterization of MgCo2O4 as an electrode for high performance supercapacitors. Electrochim Acta 161:312–321

    Article  CAS  Google Scholar 

  13. Aravindan V, Reddy MV, Madhavi S, Mhaisalkar SG, Subba Rao GV, Chowdari BVR (2011) Hybrid supercapacitor with nano-TiP2O7 as intercalation electrode. J Power Sources 196(20):8850–8854

    Article  CAS  Google Scholar 

  14. Li Z-Y, Bui PTM, Kwak D-H, Akhtar MS, Yang OB (2016) Enhanced electrochemical activity of low temperature solution process synthesized Co3O4 nanoparticles for pseudo-supercapacitors applications. Ceram Int 42(1, Part B):1879–1885

    Article  CAS  Google Scholar 

  15. Zhang C, Xie L, Song W, Wang J, Sun G, Li K (2013) Electrochemical performance of asymmetric supercapacitor based on Co3O4/AC materials. J Electroanal Chem 706:1–6

    Article  CAS  Google Scholar 

  16. Wang XW, Liu SQ, Wang HY, Tu FY, Fang D, Li YH (2012) Facile and green synthesis of Co3O4 nanoplates/graphene nanosheets composite for supercapacitor. J Solid State Electrochem 16(11):3593–3602

    Article  CAS  Google Scholar 

  17. Dong C, Xiao X, Chen G, Guan H, Wang Y (2014) Hydrothermal synthesis of Co3O4 nanorods on nickel foil. Mater Lett 123:187–190

    Article  CAS  Google Scholar 

  18. Hao Y, Wang H, Hu Z, Gan L, Xu Z (2015) Facile synthesis of mesoporous cobalt oxide rugby balls for electrochemical energy storage. New J Chem 39(1):68–71

    Article  CAS  Google Scholar 

  19. Li Q, Hu X, Yang Q, Yan Z, Kang L, Lei Z, Yang Z, Liu Z (2014) Electrocapacitive performance of graphene/Co3O4 hybrid material prepared by a nanosheet assembly route. Electrochim Acta 119:184–191

    Article  CAS  Google Scholar 

  20. Bianco A, Cheng H-M, Enoki T, Gogotsi Y, Hurt RH, Koratkar N, Kyotani T, Monthioux M, Park CR, Tascon JMD, Zhang J (2013) All in the graphene family—a recommended nomenclature for two-dimensional carbon materials. Carbon 65:1–6

    Article  CAS  Google Scholar 

  21. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339

    Article  CAS  Google Scholar 

  22. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8(10):3498–3502

    Article  CAS  Google Scholar 

  23. Subramanian V, Zhu H, Wei B (2006) Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials. Electrochem Commun 8(5):827–832

    Article  CAS  Google Scholar 

  24. Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45(15–16):2483–2498

    Article  Google Scholar 

  25. Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50(9):3210–3228

    Article  CAS  Google Scholar 

  26. Dobiášová L, Starý V, Glogar P, Valvoda V (1999) Analysis of carbon fibers and carbon composites by asymmetric X-ray diffraction technique. Carbon 37(3):421–425

    Article  Google Scholar 

  27. Kudin KN, Ozbas B, Schniepp HC, Prud'homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8(1):36–41

    Article  CAS  Google Scholar 

  28. Ferrari A, Meyer J, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K, Roth S, Geim A (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401

    Article  CAS  Google Scholar 

  29. Chua CK, Sofer Z, Pumera M (2012) Graphite oxides: effects of permanganate and chlorate oxidants on the oxygen composition. Chem Eur J 18(42):13453–13459

    Article  CAS  Google Scholar 

  30. Reddy MV, Beichen Z, Nicholette LJ, Kaimeng Z, Chowdari BVR (2011) Molten salt synthesis and its electrochemical characterization of Co3O4 for lithium batteries. Electrochem Solid-State Lett 14(5):A79–A82

    Article  CAS  Google Scholar 

  31. Aghazadeh M, Barmi A-AM, Gharailou D, Peyrovi MH, Sabour B, Khosroshahi FN (2013) Cobalt hydroxide ultra-fine nanoparticles with excellent energy storage ability. Appl Surf Sci 283(0):871–875

    Article  CAS  Google Scholar 

  32. Hadjiev VG, Iliev MN, Vergilov IV (1988) The Raman spectra of Co3O4. J Phys C Solid State Phys 21(7):L199

    Article  Google Scholar 

  33. Blazsó M, Jakab E (1999) Effect of metals, metal oxides, and carboxylates on the thermal decomposition processes of poly (vinyl chloride). J Anal Appl Pyrolysis 49(1–2):125–143

    Article  Google Scholar 

  34. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240

    Article  CAS  Google Scholar 

  35. Dong X-C, Xu H, Wang X-W, Huang Y-X, Chan-Park MB, Zhang H, Wang L-H, Huang W, Chen P (2012) 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6(4):3206–3213

    Article  CAS  Google Scholar 

  36. Li J, Zhao W, Huang F, Manivannan A, Wu N (2011) Single-crystalline Ni(OH)2 and NiO nanoplatelet arrays as supercapacitor electrodes. Nanoscale 3(12):5103–5109

    Article  CAS  Google Scholar 

  37. García-Gómez A, Duarte RG, Eugénio S, Silva TM, Carmezim MJ, Montemor MF (2015) Fabrication of electrochemically reduced graphene oxide/cobalt oxide composite for charge storage electrodes. J Electroanal Chem 755:151–157

    Article  Google Scholar 

  38. Conway BE, Pell WG (2003) Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J Solid State Electrochem 7(9):637–644

    Article  CAS  Google Scholar 

  39. Prabaharan SRS, Vimala R, Zainal Z (2006) Nanostructured mesoporous carbon as electrodes for supercapacitors. J Power Sources 161(1):730–736

    Article  CAS  Google Scholar 

  40. Pacheco D, Smith M, Morales E (2011) Characterization of composite mesoporous carbon/conducting polymer electrodes prepared by chemical oxidation of gas-phase absorbed monomer for electrochemical capacitors. Int J Electrochem Sci 6(1):78–90

    Google Scholar 

  41. Li Y, Huang K, Liu S, Yao Z, Zhuang S (2011) Meso-macroporous Co3O4 electrode prepared by polystyrene spheres and carbowax templates for supercapacitors. J Solid State Electrochem 15(3):587–592

    Article  CAS  Google Scholar 

  42. Reddy MV, Prithvi G, Loh KP, Chowdari BVR (2014) Li storage and impedance spectroscopy studies on Co3O4, CoO, and CoN for Li-ion batteries. ACS Appl Mater Interfaces 6(1):680–690

    Article  CAS  Google Scholar 

  43. Di Fabio A, Giorgi A, Mastragostino M, Soavi F (2001) Carbon-poly(3-methylthiophene) hybrid supercapacitors. J Electrochem Soc 148(8):A845–A850

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Consejo Nacional de Ciencia y Tecnología (Mexico) CB 2011-166356 project fund. The authors would like to thank PRODEP for the support provided throughout the UQROO/DGIP/003/16 project; Consejo Nacional de Ciencia y Tecnología student grant (362308), and the CICY student exchange program. V.P., also acknowledges the technical support for characterization from M. Bass-López (CICY), I. Muñoz, J. Gómez, P. González, and E. Benito (ICTP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Pacheco-Catalán.

Electronic supplementary material

Fig S1

(DOCX 733 kb)

Fig S2

(DOCX 40 kb)

Fig S3

(DOCX 268 kb)

Table S1

(DOCX 12 kb)

Table S2

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parra-Elizondo, V., Escobar-Morales, B., Morales, E. et al. Effect of carbonaceous support between graphite oxide and reduced graphene oxide with anchored Co3O4 microspheres as electrode-active materials in a solid-state electrochemical capacitor. J Solid State Electrochem 21, 975–985 (2017). https://doi.org/10.1007/s10008-016-3439-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3439-5

Keywords

Navigation