Skip to main content
Log in

Effects of saccharin and anions (SO4 2−, Cl) on the electrodeposition of Co–Ni alloys

Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrodeposition of Co–Ni alloys is investigated to examine the mechanistic effects of chloride, sulfate and saccharin on the resulting alloy composition, deposition current efficiency and partial current densities of the cathodic reactions. When deposition is carried out in chloride, sulfate or mixed sulfate-chloride solutions without saccharin, the influence of hydrogen evolution (HER) becomes dominant and deleterious at higher overpotentials, leading to very low metal deposition current efficiency and the formation of a hydroxide/oxide film on the substrate. This problem is significantly reduced when saccharin is added to the mixed sulfate-chloride plating bath and to a lesser extent the sulfate-only solution. Although saccharin is ineffective in suppressing H+ reduction at low overpotentials, it is very effective at inhibiting H2O reduction at high overpotentials and enabling metal deposition to more easily occur. The system follows anomalous behavior at all current densities both in the absence and presence of saccharin, although it approaches normal behavior as the current density increases toward −1,000 A m−2 due to Co(II) reduction being mass transfer-controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dahms H, Croll IM (1965) Anomalous codeposition of iron-nickel alloys. J Electrochem Soc 112:771–775

    Article  CAS  Google Scholar 

  2. Golodnitsky D, Rosenberg Y, Ulus A (2002) The role of anion additives in the electrodeposition of nickel-cobalt alloys from sulfamate electrolyte. Electrochim Acta 47:2707–2714

    Article  CAS  Google Scholar 

  3. Vazquez-Arenas J, Altamirano-Garcia L, Pritzker M, Luna-Sanchez R, Cabrera-Sierra R (2011) Experimental and modeling study of nickel electrodeposition including H+ and water reduction and homogeneous reactions. J Electrochem Soc 158:D33–D41

    Article  CAS  Google Scholar 

  4. Epelboin I, Joussellin M, Wiart R (1981) Impedance measurements for nickel deposition in sulfate and chloride electrolytes. J Electroanal Chem 119:61–71

    Article  CAS  Google Scholar 

  5. Bielinski J, Przyluski J (1979) Selected problems in the continuous electrodeposition of Ni-Fe alloys. Surf Technol 9:53–64

    Article  CAS  Google Scholar 

  6. Lallemand F, Ricq L, Bercot P, Pagetti J (2002) Effects of the structure of organic additives in the electrochemical preparation and characterization of CoFe film. Electrochim Acta 47:4149–4156

    Article  CAS  Google Scholar 

  7. Kim SH, Sohn HJ, Joo YC, Kim YW, Yim TH, Lee HY, Kang T (2005) Effect of saccharin addition on the microstructure of electrodeposited Fe-36 wt.% Ni alloy. Surf Coat Technol 199:43–48

    Article  CAS  Google Scholar 

  8. Burzynska L, Rudnik E (2000) The influence of electrolysis parameters on the composition and morphology of Co–Ni alloys. Hydrometallurgy 54:133–149

    Article  CAS  Google Scholar 

  9. Lallemand F, Ricq L, Deschaseaux E, De Vettor L, Bercot P (2005) Electrodeposition of cobalt-iron alloys in pulsed current from electrolytes containing organic additives. Surf Coat Technol 197:10–17

    Article  CAS  Google Scholar 

  10. Tabakovic I, Riemer S, Inturi V, Jallen P, Thayer A (2000) Organic additives in the electrochemical preparation of soft magnetic CoNiFe films. J Electrochem Soc 147:219–226

    Article  CAS  Google Scholar 

  11. Bhandari A, Hearne SJ, Sheldon BW, Soni SK (2009) Microstructural origins of saccharin-induced stress reduction in electrodeposited Ni. J Electrochem Soc 156:D279–D282

    Article  CAS  Google Scholar 

  12. Pietrelli L, Bellomo B, Fontana D, Montereali M (2005) Characterization and leaching of NiCd and NiMH spent batteries for the recovery of metals. Waste Manage (Oxford) 25:221–226

    Article  CAS  Google Scholar 

  13. Rudnik E, Nikiel M (2007) Hydrometallurgical recovery of cadmium and nickel from spent Ni-Cd batteries. Hydrometallurgy 89:61–71

    Article  CAS  Google Scholar 

  14. Matlosz M (1993) Competitive adsorption effects in the electrodeposition of iron-nickel alloys. J Electrochem Soc 140:2272–2279

    Article  CAS  Google Scholar 

  15. Zech N, Landolt D (2000) The influence of boric acid and sulfate ions on the hydrogen formation in Ni-Fe plating electrolytes. Electrochim Acta 45:3461–3471

    Article  CAS  Google Scholar 

  16. Altamirano-Garcia L (2010) Estudio cinético de la deposición de níquel en solución de sulfatos utilizando la técnica de voltamperometría lineal UAM-Azcapotzalco, México D. F

  17. Vazquez-Arenas J, Pritzker M (2012) Steady-state model for anomalous Co–Ni electrodeposition in sulfate solutions. Electrochim Acta 66:139–150

    Article  CAS  Google Scholar 

  18. Vazquez-Arenas J, Altamirano-Garcia L, Treeratanaphitak T, Pritzker M, Luna-Sanchez R, Cabrera-Sierra R (2012) Co–Ni alloy electrodeposition under different conditions of pH, current and composition. Electrochim Acta 65:234–243

    Article  CAS  Google Scholar 

  19. Vazquez-Arenas J, Pritzker M (2013) Effect of electrolyte and agitation on the anomalous behavior and morphology of electrodeposited Co–Ni alloys. J Solid State Electrochem 17:419–433

    Article  CAS  Google Scholar 

  20. Ricq L, Lallemand F, Gigandet MP, Pagetti J (2001) Influence of sodium saccharin on the electrodeposition and characterization of CoFe magnetic film. Surf Coat Technol 138:278–283

    Article  CAS  Google Scholar 

  21. Horkans J (1981) Effect of plating parameters on electrodeposited NiFe. J Electrochem Soc 128:45–49

    Article  CAS  Google Scholar 

  22. Brankovic SR, Vasiljevic N, Klemmer TJ, Johns EC (2005) Influence of additive adsorption on properties of pulse deposited CoFeNi alloys. J Electrochem Soc 152:C196–C202

    Article  CAS  Google Scholar 

  23. Kwon H, Gewirth AA (2007) SERS examination of saccharin adsorption on Ni electrodes. J Electrochem Soc 154:D577–D583

    Article  CAS  Google Scholar 

  24. Bai A, Hu CC (2002) Effects of electroplating variables on the composition and morphology of nickel-cobalt deposits plated through means of cyclic voltammetry. Electrochim Acta 47:3447–3456

    Article  CAS  Google Scholar 

  25. Nakahara S, Mahajan S (1980) The influence of solution pH on microstructure of electrodeposited cobalt. J Electrochem Soc 127:283–288

    Article  CAS  Google Scholar 

  26. Szklarska-Smialowska Z, Smialowski M (1963) Electrochemical study of the nickel-hydrogen system. J Electrochem Soc 110:444–448

    Article  CAS  Google Scholar 

  27. Baranowski B (1978) Metal-hydrogen systems at high hydrogen pressures. In: Alefeld G, Völkl J (eds) Hydrogen in Metals II, vol 29. Topics in Applied Physics. Springer Berlin Heidelberg

  28. Boniszewski T, Smith GC (1961) A note on nickel hydride. J Phys Chem Solids 21:115–118

    Article  CAS  Google Scholar 

  29. Matsushima JT, Trivinho-Strixino E, Pereira EC (2006) Investigation of cobalt deposition using the electrochemical quartz crystal microbalance. Electrochim Acta 51:1960–1966

    Article  CAS  Google Scholar 

  30. Fleischmann M, Sarabyreintjes A (1984) The simultaneous deposition of nickel and hydrogen on vitreous carbon. Electrochim Acta 29:69–75

    Article  CAS  Google Scholar 

  31. Datta M, Landolt D (1980) On the role of mass-transport in high-rate dissolution of iron and nickel in ECM electrolytes. 1. Chloride solutions. Electrochim Acta 25:1255–1262

    Article  CAS  Google Scholar 

  32. Lide DR (2004) CRC Handbook of Chemistry and Physics, 85th Edition. Taylor & Francis

  33. Orinakova R, Streckova M, Trnkova L, Rozik R, Galova M (2006) Comparison of chloride and sulphate electrolytes in nickel electrodeposition on a paraffin impregnated graphite electrode. J Electroanal Chem 594:152–159

    Article  CAS  Google Scholar 

  34. Yin KM (1997) Potentiostatic deposition model of iron-nickel alloys on the rotating disk electrode in the presence of organic additive. J Electrochem Soc 144:1560–1566

    Article  CAS  Google Scholar 

  35. Lallemand F, Ricq L, Wery A, Bercot P, Pagetti J (2004) The influence of organic additives on the electrodeposition of iron-group metals and binary alloy from sulfate electrolyte. Appl Surf Sci 228:326–333

    Article  CAS  Google Scholar 

  36. Hassani S, Raeissi K, Golozar MA (2008) Effects of saccharin on the electrodeposition of Ni-Co nanocrystalline coatings. J Appl Electrochem 38:689–694

    Article  CAS  Google Scholar 

  37. Lallemand F, Comte D, Ricq L, Renaux P, Pagetti J, Dieppedale C, Gaud P (2004) Effects of organic additives on electroplated soft magnetic CoFeCr films. Appl Surf Sci 225:59–71

    Article  CAS  Google Scholar 

  38. Mockute D, Bernotiene G (2000) The interaction of additives with the cathode in a mixture of saccharin, 2-butyne-1,4-diol and phthalimide during nickel electrodeposition in a Watts-type electrolyte. Surf Coat Technol 135:42–47

    Article  CAS  Google Scholar 

  39. Haider SZ, Malik KMA, Ahmed KJ, Hess H, Riffel H, Hursthouse MB (1983) X-ray crystal-structures of metal saccharin complexes of general formula [M(C7H4NO3S)2(H2O)4]-2H2O, where M = Fe(II), Co(II), Ni(II) and Cu(II). Inorg Chim Acta 72:21–27

    Article  CAS  Google Scholar 

  40. Chomakova M, Vitkova S (1989) Metal microdistribution during Ni-Fe alloy deposition. Electrochim Acta 34:1197–1203

    Article  Google Scholar 

  41. Mockute D, Butkiene R, Nivinskiene O (2001) Effect of chloride ions on the behavior of saccharin, N-methylsaccharin, and 2-butyne-1,4-diol during electrodeposition of nickel from acid electrolytes. Russ J Electrochem 37:376–381

    Article  CAS  Google Scholar 

  42. Lukomska A, Sobkowski J (2004) Potential of zero charge of monocrystalline copper electrodes in perchlorate solutions. J Electroanal Chem 567:95–102

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to the CONACyT (Mexico) Grants No. 2012–183230 and 205416–2013 for financial support to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Vazquez-Arenas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altamirano-Garcia, L., Vazquez-Arenas, J., Pritzker, M. et al. Effects of saccharin and anions (SO4 2−, Cl) on the electrodeposition of Co–Ni alloys. J Solid State Electrochem 19, 423–433 (2015). https://doi.org/10.1007/s10008-014-2616-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2616-7

Keywords

Navigation