Skip to main content
Log in

Electrocrystallization of cadmium on anodically formed titanium oxide

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrocrystallization of Cd on previously anodized Ti substrates was studied by means of electrochemical techniques and SEM images in three different solutions of CdSO4 (2, 10, and 50 mM). Voltammetric characterization showed the typical behavior of metal electrodeposition on conducting substrates, and potentials for electrodeposition of Cd were identified. However, the response obtained at different potentials in current transients exhibited an abnormal behavior suggesting the influence of TiO2 on the process of electrocrystallization. The characterization of the obtained electrodeposits by SEM images allowed relating electrochemical with morphological changes, in particular, variations in the crystal size and shape as well as formation of presumably Cd branches on the substrate surface. This behavior only allowed the analysis of current transients of the electrodeposits obtained in 2 mM CdSO4 solution using general equation for diffusion-controlled 3D growth and relating parameters of Cd crystal growth on anodized Ti electrode with the observed morphological changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Henderson MA (2011) Surf Sci Rep 66:185–297

    Article  CAS  Google Scholar 

  2. Kosanovic T, Jaroussos D, Bouroushian M (2010) J Solid State Electrochem 14:241–248

    Article  CAS  Google Scholar 

  3. Kuznetsov VN, Serpone N (2009) J Phys Chem C 113:15110–15123

    Article  CAS  Google Scholar 

  4. Teh CM, Mohamed AR (2011) J Alloys Comp 509:1648–1660

    Article  CAS  Google Scholar 

  5. Smirnova N, Vorobets V, Linnik O, Manuilov E, Kolbasov G, Eremenko A (2010) Surf Interface Anal 42:1205–1208

    Article  CAS  Google Scholar 

  6. Chiarello GL, Aguirre MH, Selli E (2010) J Catal 273:182–190

    Article  CAS  Google Scholar 

  7. Gunawardena G, Hills G, Montenegro I (1985) J Electroanal Chem 184:371–389

    Article  CAS  Google Scholar 

  8. Delplancke J-L, Sun M, O’Keefe TJ, Winand R (1989) Hydrometallurgy 23:47–66

    Article  CAS  Google Scholar 

  9. Delplancke J-L, Ongaro M, Winand R (1992) J Appl Electrochem 843-851

  10. Zhang J, Kuo-Shi T, O’Keefe TJ (1997) Surf Coat Technol 89:225–232

    Article  CAS  Google Scholar 

  11. Zhou Z, O’Keefe TJ (1998) J Appl Electrochem 28:461–469

    Article  CAS  Google Scholar 

  12. Teng KS, Delplancke J-L, Zhang J, O’Keefe TJ (1998) Metal Mater Trans B 29:749–755

    Article  Google Scholar 

  13. Kim S-B, Kim K-T, Park C-J, Kwon H-S (2002) J Appl Electrochem 32:1247–1255

    Article  CAS  Google Scholar 

  14. Chang HK, Choe BH, Lee JK (2005) Mater Sci Eng, A 409:317–328

    Article  Google Scholar 

  15. Ryu WH, Park CJ, Kwon HS (2010) J Nanosci Nanotech 10:1–4

    Article  Google Scholar 

  16. Xie K, Sun L, Wang C, Lai Y, Wang M, Chen H, Lin C (2010) Electrochim Acta 55:7211–7218

    Article  CAS  Google Scholar 

  17. Xie K, Wu Q, Wang Y, Guo W, Wang M, Sun L, Lin C (2011) Electrochem Commun 13:1469–1472

    Article  CAS  Google Scholar 

  18. Shpaisman N, Givan U, Patolsky F (2010) ACS Nano 4:1901–1906

    Article  CAS  Google Scholar 

  19. Sarma B, Smith YR, Swomitra KM, Misra M (2012) Mater Lett 85:33–36

    Article  CAS  Google Scholar 

  20. Acevedo-Peña P, Vázquez G, Laverde D, Pedraza-Rosas JE, González I (2010) J Solid State Electrochem 14:757–767

    Article  Google Scholar 

  21. Marino CEB, de Oliveira EM, Rocha-Filho RC, Biaggio SR (2001) Corros Sci 43:1465–1476

    Article  CAS  Google Scholar 

  22. Berger T, Monllor-Satoca D, Jankulovska M, Lana-Villarreal T, Gómez R (2012) ChemPhysChem 13:2824–2875

    Article  CAS  Google Scholar 

  23. Zarębska K, Skompska M (2011) Electrochim Acta 56:5731–5739

    Article  Google Scholar 

  24. Barrera E, Palomar-Pardavé M, Batina N, González I (2000) J Electrochem Soc 147:1787–1796

    Article  CAS  Google Scholar 

  25. Vazquez-Arenas J, Vázquez G, Meléndez AM, González I (2007) J Electrochem Soc 154:D473–D481

    Article  CAS  Google Scholar 

  26. Miranda-Hernández M, Palomar-Pardavé M, Batina N, González I (1998) J Electroanal Chem 443:81–93

    Article  Google Scholar 

  27. Scharifker BR, Mostany J, Palomar-Pardavé M, González I (1999) J Electrochem Soc 146:1005–1012

    Article  CAS  Google Scholar 

  28. Palomar-Pardavé M, González I, Batina N (2000) J Phys Chem B 104:3545–3555

    Article  Google Scholar 

  29. Miranda-Hernández M, González I, Batina N (2001) J Phys Chem B 105:4214–4223

    Article  Google Scholar 

  30. Abd El-Halim AM, Sobahi MI, Baghlaf AO (1983) Surf Technol 18:225–232

    Article  CAS  Google Scholar 

  31. Barnard R, Edwards GS, Holloway J, Tye FL (1983) J Appl Electrochem 13:751–764

    Article  CAS  Google Scholar 

  32. Abd El-Halim AM (1984) J Appl Electrochem 14:587–594

    Article  CAS  Google Scholar 

  33. Montiel T, Solorza O, Sánchez H (2000) J Electrochem Soc 147:1031–1037

    Article  CAS  Google Scholar 

  34. Dolati A, Afshar A, Ghasemi H (2005) Mater Chem Phys 94:23–28

    Article  CAS  Google Scholar 

  35. Ahmed MF, Pushpanaden F (1977) J Cryst Growth 41:77–83

    Article  CAS  Google Scholar 

  36. Itoh S, Yamazoe N, Seiyama T (1977) Surf Technol 5:27–42

    Article  CAS  Google Scholar 

  37. Nikolić LN, Čekerevac MI, Popov KI (1988) Surf Coat Technol 34:219–229

    Article  Google Scholar 

  38. Popov KI, Čekerevac MI (1989) Surf Coat Technol 37:435–440

    Article  CAS  Google Scholar 

  39. Čekerevac MI, Popov KI (1989) Surf Coat Technol 37:441–447

    Article  Google Scholar 

  40. Dogonadze RR, Kuznetsov AM, Ulstrup J (1977) Electrochim Acta 22:967–975

    Article  CAS  Google Scholar 

  41. Palomar-Pardavé M (1995) MSc. Thesis, Universidad Autónoma Metropolitana–Iztapalapa, Ciudad de México

  42. Kariuki S, Dewald HD (1996) Electroanal 8:307–313

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been given the financial support by CONACyT (Project CB-2008/105655). J. Edgar Carrera-Crespo and Próspero Acevedo-Peña are grateful to CONACyT for their grants for postgraduate studies. The authors thank to Ing. Rogelio Morán Elvira from CIE-UNAM and to the Laboratorio Central de Microscopía Electrónica from UAM-I, for the SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio González.

Additional information

“Paper submitted to the special issue in celebration of the 70th birthday of Prof. Dr. Alexander Milchev”

We dedicate this paper to Professor Milchev for his contribution on the electrochemical nucleation and growth and especially for his great human qualities.

Appendix

Appendix

Procedure for non-linear adjustment

Equations (3) and (7) were used to make non-linear adjustments of experimental current transients. This appendix shows, just by way of example, the procedure of non-linear adjustment used for Eq. (3).

Equation (3) was parameterized in the following manner:

$$ {I_{{3\mathrm{DG}-\mathrm{DC}(t)}}}=\left( {P1\times \frac{{P{2^{{{1 \left/ {2} \right.}}}}}}{{{t^{{{1 \left/ {2} \right.}}}}}}} \right)\left( {1-\exp \left\{ {-P2\times P3\times P4\left[ {t-\frac{{1-\exp \left( {-P5\times t} \right)}}{P5 }} \right]} \right\}} \right) $$
(8)

where:

\( P1=\frac{nFc }{{{\pi^{{{1 \left/ {2} \right.}}}}}} \), P2 = D, P3 = πk, P4 = N o, P5 = A

The development of non-linear adjustments was performed using Statistica software version 5, which requires initial values for every parameter shown in Eq. (8); these parameters were estimated taking into consideration the following:

  • For P1: the values of n, F and c do not vary during the experimentation, so P1 = constant value = 0.218.

  • For P2: the average of D values estimated by Cottrell equation was used as initial value (1.97 × 10−5).

  • For P3: since k does not vary during the experimentation, P3 was maintained constant at a value of 0.080.

  • For P4 and P5: in order to estimate the initial values of these parameters, we considered equations defining i m (maximum current) for instantaneous nucleation (Eq. (9)) and progressive diffusion-limited 3D nucleation (Eq. (10)).

$$ {i_{{{{\mathrm{m}}_{{3\mathrm{D}-\mathrm{iDC}}}}}}}=0.6382nFDc{{\left( {k{N_o}} \right)}^{{{1 \left/ {2} \right.}}}} $$
(9)
$$ {i_{{{{\mathrm{m}}_{{3\mathrm{D}-\mathrm{pDC}}}}}}}=0.4615nF{D^{{{3 \left/ {4} \right.}}}}c{{\left( {k\prime {N_o}A} \right)}^{{{1 \left/ {4} \right.}}}} $$
(10)
$$ k\prime =\frac{4}{3}k $$
(11)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrera-Crespo, J.E., Acevedo-Peña, P., Miranda-Hernández, M. et al. Electrocrystallization of cadmium on anodically formed titanium oxide. J Solid State Electrochem 17, 445–457 (2013). https://doi.org/10.1007/s10008-012-1975-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1975-1

Keywords

Navigation