Skip to main content
Log in

Copolymer formation of 9-(2-(benzyloxy)ethyl)-9H-carbazole and 1-tosyl-1H-pyrrole coated on glassy carbon electrode and electrochemical impedance spectroscopy

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, 9-(2-(benzyloxy)ethyl)-9H-carbazole (BzOCz) and 1-tosyl-1H-pyrrole (TsP) monomers were chemically synthesized and characterized by Fourier transform infrared reflectance (FTIR) and proton nuclear magnetic resonance (1H-NMR) spectroscopy. BzOCz and TsP were electrocoated on glassy carbon electrode (GCE) in various molar fractions (X TsP = 0.5, 0.83, 0.91, and 0.98) in 0.1 M sodium perchlorate/acetonitrile. The detailed characterization of poly(BzOCz-co-TsP) was studied by cyclic voltammetry, FTIR-attenuated total reflection spectroscopy and electrochemical impedance spectroscopy (EIS). The effects of different molar fractions during the preparation of modified electrodes were studied by EIS technique. The AC impedance technique was used to determine the capacitive behaviors of modified GCE via Nyquist, Bode magnitude, and Bode phase plots. The highest low frequency capacitance value was obtained as C LF = 23.94 μF cm−2 for X TsP = 0.98. Therefore, synthesized copolymer has more capacitive behavior than its homopolymers, such as C LF = 7.5 μF cm−2 for poly(BzOCz) and C LF = 9.44 μF cm−2 for poly(TsP). In order to interpret the AC impedance spectra, R(Q(RW)) electrical equivalent circuit was employed with linear Kramers–Kronig test. A mechanism for electropolymerization has been proposed for copolymer formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wan MX (2008) Conducting polymers with micro or nanometer structure. Tsinghua University Press, Beijing

    Google Scholar 

  2. He H, Zhu J, Tao NJ, Nagahara LA, Amlani I, Tusi R (2001) J Am Chem Soc 123:7730–7731

    Article  CAS  Google Scholar 

  3. Bof Bufon CC, Heinzel T (2006) Appl Phys Lett 89:012104–3

    Article  Google Scholar 

  4. Lu WK, Elsenbaumer RL, Wessling B (1995) Synth Met 71:2163–2166

    Article  CAS  Google Scholar 

  5. Pernaut JM, Reynolds JR (2000) J Phys Chem B 104:4080–4090

    Article  CAS  Google Scholar 

  6. Kasama D, Takata R, Kajii H, Ohmori Y (2009) Thin Solid Films 518:559–562

    Article  CAS  Google Scholar 

  7. Yeh JM, Chen CL, Chen YC, Ma CY, Lee KR, Wei Y, Li S (2002) Polymer 43:2729–2736

    Article  CAS  Google Scholar 

  8. Inzelt G, Pineri M, Schultze JW, Vorotynstev MA (2000) Electrochim Acta 45:2403–2421

    Article  CAS  Google Scholar 

  9. Kim SY, Lee KH, Chin BD, Yu JW (2009) Solar Energy Materials & Solar Cells 93:129–135

    Article  CAS  Google Scholar 

  10. Zhu R, Li G, Huang G (2009) Mater Corros 60:34–39

    Article  CAS  Google Scholar 

  11. Giraudeau A, Schaming D, Hao J (2010) J Electroanal Chem 638:70–75

    Article  CAS  Google Scholar 

  12. Samet Y, Kraiem D, Abdelhedi R (2010) Prog Org Coat 69:335–343

    Article  CAS  Google Scholar 

  13. Gupta B, Singh AK, Prakash R (2010) Thin Solid Films 519:1016–1019

    Article  CAS  Google Scholar 

  14. Cloutet E, Yammine P, Ades D, Siove A (1999) Synth Met 102:1302–1303

    Article  CAS  Google Scholar 

  15. Pandey PC, Prakash RJ (1998) Electrochem Soc 145:4103–4107

    Article  CAS  Google Scholar 

  16. Morin JF, Boudreault PL, Leclerc M (2002) Macromol Rapid Commun 23:1032–1036

    Article  CAS  Google Scholar 

  17. Huang J, Niu YH, Yang W, Mo YQ, Yuan M, Cao Y (2002) Macromolecules 35:6080–6082

    Article  CAS  Google Scholar 

  18. Abe SY, Bernede JC, Delvalle MA, Tregouet Y, Ragot F, Diaz FR, Lefrant S (2002) Synth Met 126:1–6

    Article  Google Scholar 

  19. Meng H, Chen ZK, Yu WL, Pei J, Liu XL, Lai YH, Huang W (1999) Synth Met 100:297–301

    Article  CAS  Google Scholar 

  20. Tran-Van F, Henri T, Chevrot C (2002) Electrochim Acta 47:2927–2936

    Article  CAS  Google Scholar 

  21. Huang J, Xu YS, Hou Q, Yang W, Yuan M, Cao Y (2002) Macromol Rapid Commun 23:709–712

    Article  CAS  Google Scholar 

  22. Wang J, Lu B, Liu C, Xu J, Pei M (2010) J Mater Sci 45:5769–5777

    Article  CAS  Google Scholar 

  23. Liu C, Lu B, Fan C, Xu J, Li Y, Jiang F (2010) J Solid State Electrochem 14:1153–1161

    Article  CAS  Google Scholar 

  24. Nie G, Xu J, Zhang S, Cai T, Han X (2006) J Appl Polym Sci 102:1877–1885

    Article  CAS  Google Scholar 

  25. Sriwichai S, Baba A, Deng S, Huang C, Phanichphant S, Advincula RC (2008) Langmuir 24:9017–9023

    Article  CAS  Google Scholar 

  26. Sarac AS, Ates M, Parlak EA (2005) Int J Polym Mater 54:883–897

    Article  CAS  Google Scholar 

  27. Sarac AS, Dogru E, Ates M, Parlak EA (2006) Turkish J Chem 30:401–418

    CAS  Google Scholar 

  28. Bilal S, Holze R (2006) J Electroanal Chem 592:1–13

    Article  CAS  Google Scholar 

  29. Doherty WJ, Wysocki RJ, Armstrong NR, Saavedra SS (2006) Macromolecules 39:4418–4424

    Article  CAS  Google Scholar 

  30. Nelson KL (1964) In: Olah GA (ed) Friedel-Crafts and related reactions. Wiley, New York, pp 1024–1032

    Google Scholar 

  31. Cerfontain H (1968) Mechanistic aspects in aromatic sulfonation and desulfonation. Wiley, New York

    Google Scholar 

  32. Alp C, Ekinci D, Gultekin MS, Senturk M, Sahin E, Kufrevioglu OI (2010) Bioorg Med Chem 18:4468–4474

    Article  CAS  Google Scholar 

  33. Kitzing R, Fuchs R, Joyeux M, Prizbach H (1968) Helv Chim Acta 51:888–895

    Article  CAS  Google Scholar 

  34. Binst V, Baert RB, Salsmans R (1973) Synth Commun 3:302–304

    Article  Google Scholar 

  35. Nonoyama M (1988) Inorg Chim Acta 145:53–56

    Article  CAS  Google Scholar 

  36. Papadopoulos EP, Haider NF (1968) Tetrahedron Lett 14:1721–1723

    Article  Google Scholar 

  37. Xu J, Nie G, Zhang S, Han X, Hou J, Pu S (2005) J Mater Sci 40:2867–2873

    Article  CAS  Google Scholar 

  38. Janosik T, Shirani H, Wahlstrom N, Malky I, Stensland B, Bergman J (2006) Tetrahedron 62:1699–1707

    Article  CAS  Google Scholar 

  39. Saraswathi R, Gerard M, Mahotra BD (1999) J Appl Polym Sci 74:145–150

    Article  CAS  Google Scholar 

  40. Papez V, Inganas O, Cimrova V, Nespurek S (1991) J Electroanal Chem 282:123–139

    Article  Google Scholar 

  41. Ates M, Uludag N, Sarac AS (2011) Mater Chem Phys 127:120–127

    Article  CAS  Google Scholar 

  42. Inzelt G (2003) J Solid State Electrochem 7:503–510

    Article  CAS  Google Scholar 

  43. Raoof JB, Ojani R, Beittollahi H, Enzadeh RH (2006) Electroanalysis 18:1193–1201

    Article  CAS  Google Scholar 

  44. Ates M, Uludag N, Sarac AS (2011) Fibers and Polymers 12:8–14

    Article  CAS  Google Scholar 

  45. Láng G, Inzelt G (1999) Electrochim Acta 44:2037–2051

    Article  Google Scholar 

  46. Ates M, Uludag N (2010) Fibers and Polymers 11:331–337

    Article  CAS  Google Scholar 

  47. Ates M, Uludag N (2011) Fibers and Polymers 12:296–302

    Article  CAS  Google Scholar 

  48. Boukamp BA (2004) Solid State Ionics 169:65–73

    Article  CAS  Google Scholar 

  49. Martinusz K, Láng G, Inzelt G (1997) J Electroanal Chem 433:1–8

    Article  CAS  Google Scholar 

  50. Láng G, Kocsis L, Inzelt G (1993) Electrochim Acta 38:1047–1049

    Article  Google Scholar 

  51. Ragoisha GA, Bondarenko AS (2004) Surf Sci 566–568:315–320

    Article  Google Scholar 

  52. Bondarenko AS, Ragoisha GA, Osipovich NP, Streltsov EA (2006) Electrochem Commun 8:921–926

    Article  CAS  Google Scholar 

  53. Göhr H (1981) Ber Bunsenges Phys Chem 85:274–280

    Google Scholar 

  54. Ragoisha GA, Bondarenko AS, Osipovich NP, Streltsov EA (2004) J Electroanal Chem 565:227–234

    Article  CAS  Google Scholar 

  55. Boubour E, Lennox RB (2000) Langmuir 16:4222–4228

    Article  CAS  Google Scholar 

  56. Boubour E, Lennox RB (2000) Langmuir 16:7464–7470

    Article  CAS  Google Scholar 

  57. Boubour E, Lennox RB (2000) J Phys Chem B 104:9004–9010

    Article  CAS  Google Scholar 

  58. Yang L, Wei W, Xia J, Tao H, Yang P (2005) Anal Sci 21:679–684

    Article  CAS  Google Scholar 

  59. Lasia A (1999) In: Conway BE, White R (eds) Modern aspects of electrochemistry. Kluwer, New York

    Google Scholar 

  60. Liu X, Osaka TJ (1997) Electrochem Soc 144:3066–3071

    Article  CAS  Google Scholar 

  61. Biniak S, Dziaelendziak B, Siedlewski J (1995) Carbon 33:1255–1263

    Article  CAS  Google Scholar 

  62. Fikus A, Rammelt U, Plieth W (1999) Electrochim Acta 44:2025–2035

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Prof. Dr. A. Sezai Sarac (Istanbul Technical University, Electropol. Laboratory, Istanbul, Turkey) for providing opportunity to use laboratory facilitates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Ates.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ates, M., Uludag, N. & Karazehir, T. Copolymer formation of 9-(2-(benzyloxy)ethyl)-9H-carbazole and 1-tosyl-1H-pyrrole coated on glassy carbon electrode and electrochemical impedance spectroscopy. J Solid State Electrochem 16, 2639–2649 (2012). https://doi.org/10.1007/s10008-012-1688-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1688-5

Keywords

Navigation