Skip to main content
Log in

Theoretical insights into effect of surface composition of Pt-Ru bimetallic catalysts on CH3OH oxidation: mechanistic considerations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A deeper mechanistic understanding on CH3OH oxidation on Pt-Ru alloys with different Ru surface compositions is provided by DFT-based theoretical studies in this paper. The present results show that alloying and surface compositions of Ru can change CH3OH oxidation pathway and activity. The optimal surface composition of Ru is speculated to be ca. 50% since the higher Ru surface composition can lead to formation of carbonaceous species that can poison surface. Our present calculated Ru surface composition of ca. 50% exhibits excellent consistency with experimental studies. The origin of enhanced catalytic activity of Pt-Ru alloys is determined. The significantly decreased surface work functions after alloying suggest more electrons are transferred into adsorbates. The calculated lower electrode potentials after alloying imply that lower overpotentials are required for CH3OH oxidation. The excellent consistency with experimental study on decreased onset potentials after alloying further confirms accuracy of our present calculated results. It is hoped that a systematic understanding of the atomic- and molecular-level processes on CH3OH oxidation mechanisms on Pt-Ru alloys will result in the ultimate goal of the explanation of origin of enhanced electrocatalytic activity and design of improved Pt-based alloy electrocatalysts for DMFCs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Quantum ESPRESSO program package-http://www.quantum-espresso.org/; XCRYSDEN graphical package-http://www.xcrysden.org/.

References

  1. Hamnett A (1997) Mechanism and electrocatalysis in the direct methanol fuel cell. Catal Today 38:445–457

    Article  CAS  Google Scholar 

  2. Paulus UA, Endruschat U, Feldmeyer GJ, Schmidt TJ, Bonnemann H, Behm RJ (2000) New PtRu alloy colloids as precursors for fuel cell catalysts. J Catal 195:383–393

    Article  CAS  Google Scholar 

  3. Gasteiger HA, Marković N, Ross PN, Cairns EJ (1994) Carbon monoxide electrooxidation on well-characterized platinum-ruthenium alloys. J Phys Chem 98:617–625

    Article  CAS  Google Scholar 

  4. Watanabe M, Motoo S (1975) Electrocatalysis by ad-atoms: Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J Electroanal Chem Interfacial Electrochem 60:267–273

    Article  CAS  Google Scholar 

  5. Gasteiger HA, Marković NM, Ross PN (1995) H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt-Ru. 1. Rotating disk electrode studies of the pure gases including temperature effects. J Phys Chem 99:8290–8301

    Article  CAS  Google Scholar 

  6. Sun YP, Xing L, Scott K (2010) Analysis of the kinetics of methanol oxidation in a porous Pt-Ru anode. J Power Sources 195:1–10

    Article  CAS  Google Scholar 

  7. Lu QY, Yang B, Zhuang L, Lu JT (2005) Anodic activation of PtRu/C catalysts for methanol oxidation. J Phys Chem B 109:1715–1722

    Article  CAS  PubMed  Google Scholar 

  8. Xu JB, Hua KF, Sun GZ, Wang C, Lv XY, Wang YJ (2006) Electrooxidation of methanol on carbon nanotubes supported Pt-Fe alloy electrode. Electrochem Commun 8:982–986

    Article  CAS  Google Scholar 

  9. Uchida H, Ozuka H, Watanabe M (2002) Electrochemical quartz crystal microbalance analysis of CO-tolerance at Pt-Fe alloy electrodes. Electrochim Acta 47:3629–3636

    Article  CAS  Google Scholar 

  10. Hernández-Fernández P, Montiel M, Ocón P, Fierro JLG, Wang H, Abruña HD, Rojas S (2010) Effect of Co in the efficiency of the methanol electrooxidation reaction on carbon supported Pt. J Power Sources 195:7959–7967

    Article  CAS  Google Scholar 

  11. Guo DJ, Cui SK (2009) Hollow PtCo nanospheres supported on multi-walled carbon nanotubes for methanol electrooxidation. J Colloid Interface Sci 340:53–57

    Article  CAS  PubMed  Google Scholar 

  12. Zhou XW, Zhang RH, Zhou ZY, Sun SG (2011) Preparation of PtNi hollow nanospheres for the electrocatalytic oxidation of methanol. J Power Sources 196:5844–5848

    Article  CAS  Google Scholar 

  13. Jiang Q, Jiang LH, Hou HY, Qi J, Wang SL, Sun GQ (2010) Promoting effect of Ni in PtNi bimetallic electrocatalysts for the methanol oxidation reaction in alkaline media: experimental and density functional theory studies. J Phys Chem C 114:19714–19722

    Article  CAS  Google Scholar 

  14. Jiang Q, Jiang LH, Wang SL, Qi J, Sun JQ (2010) A highly active PtNi/C electrocatalyst for methanol electro-oxidation in alkaline media. Catal Commun 12:67–70

    Article  CAS  Google Scholar 

  15. Kim IT, Lee HK, Shim J (2008) Synthesis and characterization of Pt-Pd catalysts for methanol oxidation and oxygen reduction. J Nanosci Nanotechnol 8:5302–5305

    Article  CAS  PubMed  Google Scholar 

  16. Xu CW, Su YZ, Tan LL, Liu ZL, Zhang JH, Chen S, Jiang SP (2009) Electrodeposited PtCo and PtMn electrocatalysts for methanol and ethanol electrooxidation of direct alcohol fuel cells. Electrochim Acta 54:6322–6326

    Article  CAS  Google Scholar 

  17. Neto AO, Dias RR, Tusi M, Linardi M, Spinaće EV (2007) Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process. J Power Sources 166:87–91

    Article  CAS  Google Scholar 

  18. Yi QF, Zhang JJ, Chen AC, Liu XP, Xu GR, Zhou ZH (2008) Activity of a novel titanium-supported bimetallic PtSn/Ti electrode for electrocatalytic oxidation of formic acid and methanol. J Appl Electrochem 38:695–701

    Article  CAS  Google Scholar 

  19. He WW, Wu XC, Liu JB, Zhang K, Chu WG, Feng LL, Hu XN, Zhou WY, Xie XX (2009) Pt-guided formation of Pt-Ag alloy nanoislands on Au nanorods and improved methanol electro-oxidation. J Phys Chem C 113:10505–10510

    Article  CAS  Google Scholar 

  20. Zhao D, Wang YH, Yan B, Xu BQ (2009) Manipulation of PtAg nanostructures for advanced electrocatalyst. J Phys Chem C 113:1242–1250

    Article  CAS  Google Scholar 

  21. Luo J, Njoki PN, Lin Y, Mott D, Wang LY, Zhong CJ (2006) Characterization of carbon-supported AuPt nanoparticles for electrocatalytic methanol oxidation reaction. Langmuir 22:2892–2898

    Article  CAS  PubMed  Google Scholar 

  22. Luo J, Maye MM, Kariuki NN, Wang LY, Njoki PN, Lin Y, Schadt M, Naslund HR, Zhong CJ (2005) Electrocatalytic oxidation of methanol: carbon-supported gold-platinum nanoparticle catalysts prepared by two-phase protocol. Catal Today 99:291–297

    Article  CAS  Google Scholar 

  23. Xu CX, Wang RY, Chen MW, Zhang Y, Ding Y (2010) Dealloying to nanoporous Au/Pt alloys and their structure sensitive electrocatalytic properties. Phys Chem Chem Phys 12:239–246

    Article  CAS  PubMed  Google Scholar 

  24. Morante-Catacora TY, Ishikawa Y, Cabrera CR (2008) Sequential electrodeposition of Mo at Pt and PtRu methanol oxidation catalyst particles on HOPG surfaces. J Electroanal Chem 621:103–112

    Article  CAS  Google Scholar 

  25. Buatier de Mongeot F, Scherer M, Gleich B, Kopatzki E, Behm RJ (1998) CO adsorption and oxidation on bimetallic Pt/Ru(0001) surfaces – a combined STM and TPD/TPR study. Surf Sci 411:249–262

    Article  CAS  Google Scholar 

  26. Käsberger U, Jakob P (2003) Growth and thermal evolution of submonolayer Pt films on Ru(0001) studied by STM. Surf Sci 540:76–88

    Article  CAS  Google Scholar 

  27. Jakob P, Schlapka A (2007) CO adsorption on epitaxially grown Pt layers on Ru(0001). Surf Sci 601:3556–3568

    Article  CAS  Google Scholar 

  28. Schlapka A, Käsberger U, Menzel D, Jakob P (2002) Vibrational spectroscopy of CO used as a local probe to study the surface morphology of Pt on Ru(0001) in the submonolayer regime. Surf Sci 502:129–135

    Article  Google Scholar 

  29. Schlapka A, Lischka M, Groß A, Käsberger U, Jakob P (2003) Surface strain versus substrate interaction in heteroepitaxial metal layers: Pt on Ru(0001). Phys Rev Lett 91:016101

    Article  CAS  PubMed  Google Scholar 

  30. Gazdzicki P, Thussing S, Jakob P (2011) Oxidation of methanol on oxygen covered Ptn/Ru(0001) layers. J Phys Chem C 115:23013–23022

    Article  CAS  Google Scholar 

  31. Ou LH (2018) Theoretical insights into the effect of solvation and sublayer Ru on Pt-catalytic CH3OH oxidation mechanisms in the aqueous phase. J Phys Chem C 122:14554–14565

    Article  CAS  Google Scholar 

  32. Franceschini EA, Bruno MM, Williams FJ, Viva FA, Corti HR (2013) High-activity mesoporous Pt/Ru catalysts for methanol oxidation. ACS Appl Mater Interfaces 5:10437–10444

    Article  CAS  PubMed  Google Scholar 

  33. Hoster H, Iwasita T, Baumgärtner H, Vielstich W (2001) Pt-Ru model catalysts for anodic methanol oxidation: influence of structure and composition on the reactivity. Phys Chem Chem Phys 3:337–346

    Article  CAS  Google Scholar 

  34. Iwasita T, Nart FC, Vielstich W (1990) An FTIR study of the catalytic activity of a 85: 15 Pt: Ru alloy for methanol oxidation. Ber Bunsenges Phys Chem 94:1030–1034

    Article  CAS  Google Scholar 

  35. Iwasita T, Hoster H, John-Anacker A, Lin WF, Vielstich W (2000) Methanol oxidation on PtRu electrodes. Influence of surface structure and Pt−Ru atom distribution. Langmuir. 16:522–529

    Article  CAS  Google Scholar 

  36. Ross PN (1998) The science of electrocatalysis on bimetallic surfaces. In: Lipkowski J, Ross PN (eds) Electrocatalysis. Wiley-VCH, New York

    Google Scholar 

  37. Gasteiger HA, Marković N, Ross Jr PN, Cairns EJ (1993) Methanol electrooxidation on well-characterized Pt-Ru alloys. J Phys Chem 97:12020–12029

    Article  CAS  Google Scholar 

  38. Gasteiger HA, Marković N, Ross Jr PN, Cairns EJ (1994) Temperature-dependent methanol electro-oxidation on well-characterized Pt-Ru alloys. J Electrochem Soc 141:1795–1803

    Article  CAS  Google Scholar 

  39. Garrick TR, Diao WJ, Tengco JM, Stach EA, Senanayake SD, Chen DA, Monnier JR, Weidner JW (2016) The effect of the surface composition of Ru-Pt bimetallic catalysts for methanol oxidation. Electrochim Acta 195:106–111

    Article  CAS  Google Scholar 

  40. Wang QM, Chen SG, Jiang J, Liu JX, Deng JH, Ping XY, Wei ZD (2020) Manipulating the surface composition of Pt-Ru bimetallic nanoparticles to control the methanol oxidation reaction pathway. Chem Commun 56:2419–2422

    Article  CAS  Google Scholar 

  41. Gasteiger HA, Marković N, Ross Jr PN, Cairns EJ (1993) Electro-oxidation of small organic molecules on well-characterized Pt-Ru alloys. Electrochim Acta 39:1825–1832

    Article  Google Scholar 

  42. Krausa M, Vielstich W (1994) Study of the electrocatalytic influence of Pt/Ru and Ru on the oxidation of residues of small organic molecules. J Electroanal Chem 379:307–314

    Article  Google Scholar 

  43. Liu R, Iddir H, Fan Q, Hou G, Bo A, Ley KL, Smotkin ES, Sung YE, Kim H, Thomas S, Wieckowski A (2000) Potential-dependent infrared absorption spectroscopy of adsorbed CO and X-ray photoelectron spectroscopy of arc-melted single-phase Pt, PtRu, PtOs, PtRuOs, and Ru electrodes. J Phys Chem B 104:3518–3531

    Article  CAS  Google Scholar 

  44. Waszczuk P, Wieckowski A, Zelenay P, Gottesfeld S, Coutanceau C, Leger JM, Lamy C (2001) Adsorption of CO poison on fuel cell nanoparticle electrodes from methanol solutions: a radioactive labeling study. J Electroanal Chem 511:55–64

    Article  CAS  Google Scholar 

  45. Nagao R, Cantane DA, Lima FHB, Varela H (2013) Influence of anion adsorption on the parallel reaction pathways in the oscillatory electro-oxidation of methanol. J Phys Chem C 117:15098–15105

    Article  CAS  Google Scholar 

  46. Bagotzky VS, Vassiliev YB, Khazova OA (1977) Generalized scheme of chemisorption, electrooxidation and electroreduction of simple organic compounds on platinum group metals. J Electroanal Interfacial Electrochem 81:229–238

    Article  Google Scholar 

  47. Parsons R, Vandernoot T (1988) The oxidation of small organic molecules: a survey of recent fuel cell related research. J Electroanal Interfacial Electrochem 257:9–45

    Article  CAS  Google Scholar 

  48. Greeley J, Mavrikakis M (2004) Competitive paths for methanol decomposition on Pt(111). J Am Chem Soc 126:3910–3919

    Article  CAS  PubMed  Google Scholar 

  49. Greeley J, Mavrikakis M (2002) A first-principles study of methanol decomposition on Pt(111). J Am Chem Soc 124:7193–7201

    Article  CAS  PubMed  Google Scholar 

  50. Cao D, Lu GQ, Wasileski SA, Neurock M (2005) Mechanisms of methanol decomposition on platinum: a combined experimental and ab initio approach. J Phys Chem B 109:11622–11633

    Article  CAS  PubMed  Google Scholar 

  51. Skúlason E, Tripković V, Björketun ME, Gudmundsdóttir S, Karlberg G, Rossmeisl J, Bligaard T, Jónsson H, Nørskov JK (2010) Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J Phys Chem C 114:18182–18197

    Article  CAS  Google Scholar 

  52. Henderson MA (2002) Interaction of water with solid surfaces: fundamental aspects revisited. Surf Sci Rep 46:1–308

    Article  CAS  Google Scholar 

  53. Ogasawara H, Brena B, Nordlund D, Nyberg M, Pelmenschikov A, Pettersson LGM, Nilsson A (2002) Structure and bonding of water on Pt(111). Phys Rev Lett 89:276102

    Article  CAS  PubMed  Google Scholar 

  54. Mattsson T, Paddison S (2003) Methanol at the water-platinum interface studied by ab initio molecular dynamics. Surf Sci 544:L697–L702

    Article  CAS  Google Scholar 

  55. Okamoto Y, Sugino O, Mochizuki Y, Ikeshoji T, Morikawa Y (2003) Comparative study of dehydrogenation of methanol at Pt(111)/water and Pt(111)/vacuum interfaces. Chem Phys Lett 377:236–242

    Article  CAS  Google Scholar 

  56. Methfessel M, Hennig D, Scheffler M (1992) Trends of the surface relaxations, surface energies, and work functions of the 4d transition metals. Phys Rev B 46:4816–4829

    Article  CAS  Google Scholar 

  57. Skriver HL, Rosengaard NM (1992) Surface energy and work function of elemental metals. Phys Rev B 46:7157–7168

    Article  CAS  Google Scholar 

  58. Lang ND, Kohn W (1971) Theory of metal surfaces: work function. Phys Rev B 3:1215–1222

    Article  Google Scholar 

  59. Goodpaster JD, Bell AT, Head-Gordon M (2016) Identification of possible pathways for C-C bond formation during electrochemical reduction of CO2: new theoretical insights from an improved electrochemical model. J Phys Chem Lett 7:1471–1477

    Article  CAS  PubMed  Google Scholar 

  60. Gauthier JA, Ringe S, Dickens CF, Garza AJ, Bell AT, Head-Gordon M, Nørskov JK, Chan K (2019) Challenges in modelling electrochemical reaction energetics with polarizable continuum models. ACS Catal 9:920–931

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Key Program of Education Department of Hunan Province (Grant No. 19A337); Hunan Provincial Natural Science Foundation of China (Grant No. 2018JJ2273); Key Program of Hunan University of Arts and Science (Grant No. 19ZD06); National Natural Science Foundation of China (Grant No. 21303048).

Author information

Authors and Affiliations

Authors

Contributions

Lihui Ou contributed to the study conception and design. Data collection and analysis were performed by Lihui Ou. The first draft of the manuscript was written by Lihui Ou.

Corresponding author

Correspondence to Lihui Ou.

Ethics declarations

Conflict of interest

The author declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 1360 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, L. Theoretical insights into effect of surface composition of Pt-Ru bimetallic catalysts on CH3OH oxidation: mechanistic considerations. J Mol Model 28, 149 (2022). https://doi.org/10.1007/s00894-022-05150-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05150-7

Keywords

Navigation