Skip to main content

Advertisement

Log in

2D phosphorus carbide as promising anode materials for Na/K-ion batteries from first-principles study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

First-principles calculations based on density functional theory were used to investigate the electrochemical performance of monolayer γ-PC for Na- and K-ion batteries. Molecular dynamics simulations indicate that the monolayer γ-PC have the thermal and dynamic stability. A substantial charge transfer from the Na/K atoms to the γ-PC sheet enhances the electrical conductivity of γ-PC. The results show that the adsorption energies of Na and K are 1.53 eV and 2.04 eV, respectively, which are much higher than Na/K bulk cohesive energy and sufficiently ensure stability and safety. Additionally, the low diffusion barriers on γ-PC monolayer are 0.034 eV for Na and 0.027 eV for K, indicating excellent rate performance. The γ-PC sheet has a high theoretical capacity for both Na (519.9 mAh/g) and K (326.6 mAh/g) ion batteries, which can satisfy the requirement of energy storage devices to anode materials. Our results strongly suggest that 2D γ-PC monolayer is an exceedingly promising anode material for both NIBs and KIBs with high adsorption energies, high capacity, and low diffusion barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data generated or used during the study is available from the corresponding author by request.

Code availability

N/A.

References

  1. Sehrawat P, Julien C, Islam SS (2016) Carbon nanotubes in Li-ion batteries: a review. Mater Sci Eng B

  2. Obrovac MN, Chevrier VL (2014) Alloy negative Eelectrodes for Li-ion batteries. Chem Rev 114:11444–11502

    Article  CAS  PubMed  Google Scholar 

  3. Liang Y, Chen Z, Jing Y, Rong Y, Yao Y (2015) Heavily N-dopable II-conjugated redox polymers with ultrafast energy storage capability. J Am Chem Soc 137

  4. Haxel GB, Hedrick JB, Orris GJ, Stauffer PH, Ii JWH (2002) Rare earth elements: critical resources for high technology

  5. Yang S, Li S, Tang S, Shen D, Dong W, Sun W (2017) Adsorption, intercalation and diffusion of Na on defective bilayer graphene: a computational study. Surf Sci 658:31–37

    Article  CAS  Google Scholar 

  6. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682

    Article  CAS  PubMed  Google Scholar 

  7. Wu X, Leonard DP, Ji X (2017) Emerging non-aqueous potassium-ion batteries: challenges and opportunities. Chem Mater

  8. Zhang X, Zhang Z, Yao S, Chen A, Zhou Z (2018) An effective method to screen sodium-based layered materials for sodium ion batteries. Npj Comput Math 4

  9. Zhang W,  Mao J, Li S, Chen Z,  Gu Z (2017) Phosphorus-based alloy materials for advanced potassium-ion battery anode. J Am Chem Soc

  10. Junping H, Bo X et al (2015) 2D Electrides as promising anode materials for Na-ion batteries from first-principles study. Acs Appl Mater Interfaces

  11. Persson K, Sethuraman VA, Hardwick LJ et al (2010) Lithium diffusion in graphitic carbon[J]. J Phys Chem Lett 1(8):1176–1180

    Article  CAS  Google Scholar 

  12. Winter M, Besenhard JO, Spahr ME et al (1998) Insertion electrode materials for rechargeable lithium batteries[J]. Adv Mater 10(10):725–763

    Article  CAS  Google Scholar 

  13. Komaba S, Hasegawa T, Dahbi M, Kubota K (2015) Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem Commun 60:172–175

    Article  CAS  Google Scholar 

  14. Shi L, Zhao T, Xu A, Xu J (2016) Ab initio prediction of a silicene and graphene heterostructure as an anode material for Li- and Na-ion batteries. J Mater Chem 4:16377–16382

    Article  CAS  Google Scholar 

  15. Pramudita JC, Sehrawat D, Goonetilleke D, Sharma N (2017) An initial review of the status of electrode materials for potassium‐ion batteries. Adv Energy Mater 7: 1602911.1–1602911.21

  16. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  PubMed  Google Scholar 

  17. Li W, Yang Y, Zhang G, Zhang YW (2015) Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Lett 15:1691

    Article  PubMed  CAS  Google Scholar 

  18. Geng B, Jeon KJ, Lucas IT, Richardson TJ, Wang F, Kostecki R, Pollak E (2010) The interaction of Li+ with single-layer and few-layer graphene. Nano Lett 10:3386–3388

    Article  PubMed  CAS  Google Scholar 

  19. Zhang Y, Rui X, Tang Y, Liu Y, Wei J, Chen S, Leow WR, Li W, Liu Y, Deng J (2016) Wet-chemical processing of phosphorus composite nanosheets for high-rate and high-capacity lithium-ion batteries. Adv Energy Mater 6:1502409

    Article  CAS  Google Scholar 

  20. Jiang H, Lu Z, Wu M, Ciucci F, Zhao T (2016) Borophene: a promising anode material offering high specific capacity and high rate capability for lithium-ion batteries. Nano Energy 23:97–104

    Article  CAS  Google Scholar 

  21. Chhowalla M, Shin HS, Eda G, Li L, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275

    Article  PubMed  Google Scholar 

  22. Tang Q, Zhou Z, Shen P (2012) Are mxenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3c2 and Ti3c2x2 (X = F, Oh) Monolayer. J Am Chem Soc 134:16909–16916

    Article  CAS  PubMed  Google Scholar 

  23. Er D, Li J, Naguib M, Gogotsi Y, Shenoy VB (2014) Ti3c2 Mxene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl Mater Interfaces 6:11173–11179

    Article  CAS  PubMed  Google Scholar 

  24. He P, Yu H, Li D, Zhou H (2012) Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. J Mater Chem 22:3680–3695

    Article  CAS  Google Scholar 

  25. Zhao S, Kang W, Xue J (2014) The potential application of phosphorene as an anode material in Li-ion batteries. J Mater Chem 2:19046–19052

    Article  CAS  Google Scholar 

  26. Sun J, Lee H, Pasta M, Yuan H, Zheng G, Sun Y, Li Y, Cui Y (2015) A Phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat Nanotechnol 10:980–985

    Article  CAS  PubMed  Google Scholar 

  27. Sun J, Zheng G, Lee H, Liu N, Wang H, Yao H, Yang W, Cui Y (2014) Formation of stable phosphorus–carbon bond for enhanced performance in black phosphorus nanoparticle–graphite composite battery anodes. Nano Lett 14:4573–4580

    Article  CAS  PubMed  Google Scholar 

  28. Xu J, Jeon I, Ma J, Dou Y, Kim S, Seo J, Liu H, Dou SX, Baek J, Dai L (2017) Understanding of the capacity contribution of carbon in phosphorus-carbon composites for high-performance anodes in lithium ion batteries. Nano Res 10:1268–1281

    Article  CAS  Google Scholar 

  29. Ruan B, Wang J, Shi D, Xu Y, Chou S, Liu H, Wang J (2015) A phosphorus/N-doped carbon nanofiber composite as an anode material for sodium-ion batteries. J Mater Chem 3:19011–19017

    Article  CAS  Google Scholar 

  30. Li W, Li H, Lu Z, Gan L, Ke L, Zhai T, Zhou H (2015) Layered phosphorus-like Gep5: a promising anode candidate with high initial coulombic efficiency and large capacity for lithium ion batteries. Energy Environ Sci 8:3629–3636

    Article  CAS  Google Scholar 

  31. Teter DM, Hemley RJ (1996) Low compressibility carbon nitrides. Science 271:53–55

    Article  CAS  Google Scholar 

  32. Claeyssens F, Hart JN, Allan NL, Oliva JM (2009) Solid phases of phosphorus carbide: an ab initio study. Phys Rev B 79:134115

    Article  CAS  Google Scholar 

  33. Kuo MT, May PW, Gunn A, Ashfold MNR, Wild RK (2000) Studies of phosphorus doped diamond-like carbon films. Diamond Relat Mater 9:1222–1227

    Article  CAS  Google Scholar 

  34. Pearce SRJ, May PW, Wild RK, Hallam KR, Heard PJ (2002) Deposition and properties of amorphous carbon phosphide films. Diamond Relat Mater 11:1041–1046

    Article  CAS  Google Scholar 

  35. Li F, Liu X, Wang J, Zhang X, Yang B, Qu Y, Zhao M (2017) A promising alkali-metal ion battery anode material: 2d metallic phosphorus carbide ( Β 0 -Pc). Electrochim Acta :S0013468617324635

  36. Zhang W, Yin J, Zhang P, Tang X, Ding Y (2018) Two-dimensional phosphorus carbide as a promising anode material for lithium-ion batteries. J Mater Chem 6:12029–12037

    Article  CAS  Google Scholar 

  37. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  38. Zhang R, Liu X, Wen Z, Jiang Q (2011) Prediction of silicon nanowires as photocatalysts for water splitting: band structures calculated using density functional theory. J Phys Chem C 115:3425–3428

    Article  CAS  Google Scholar 

  39. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  40. Grimme S (2006) Semiempirical Gga-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  PubMed  Google Scholar 

  41. Monkhorst HJ, Pack JD (1976) Special points for brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  42. Zhou Y, Zhao M, Chen ZW, Shi XM, Jiang Q (2018) Potential Application of 2d monolayer Β-Gese as an anode material in Na/K ion batteries. PCCP 20:30290–30296

    Article  CAS  PubMed  Google Scholar 

  43. Martyna GJ, Klein ML, Tuckerman M (1992) Nose?–Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 97:2635

    Article  Google Scholar 

  44. Verlet L (1967) Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules[J]. Phys Rev 159(1):98–107

    Article  CAS  Google Scholar 

  45. Verlet L (1967) Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules[J]. Phys Rev 165:201–214

    Article  Google Scholar 

  46. Tuckerman ME, Liu Y, Ciccotti G, Martyna GJ (2001) Non-Hamiltonian molecular dynamics: generalizing Hamiltonian phase space principles to non-Hamiltonian systems. J Chem Phys 115:1678–1702

    Article  CAS  Google Scholar 

  47. Claeyssens F, Hart JN, Allan NL et al (2009) Solid phases of phosphorus carbide: an ab initio study[J]. Phys Rev B 79(13):897–899

    Article  CAS  Google Scholar 

  48. Bhauriyal P, Mahata A, Pathak B (2018) Graphene-like carbon–nitride monolayer: a potential anode material for Na-and K-ion batteries[J]. J Phys Chem C 122(5):2481–2489

    Article  CAS  Google Scholar 

  49. Zhang Z, Liu X, Yakobson BI et al (2012) Two-dimensional tetragonal TiC monolayer sheet and nanoribbons[J]. J Am Chem Soc 134(47):19326–19329

    Article  CAS  PubMed  Google Scholar 

  50. Pacchioni G, Beckmann H-O, Koutecký J (1982) Investigation of alkali-metal clusters with pseudopotential multireference double-excitation configuration interaction method. Chem Phys Lett 87(2):151–158

    Article  CAS  Google Scholar 

  51. Ray AK, Altekar SD (1990) Ab initio many-body perturbation-theoretic study of small potassium clusters. Phys Rev B 42:1444

    Article  CAS  Google Scholar 

  52. Noguchi Y, Ishii S, Ohno K, Sasaki T (2008) Quasiparticle energy spectra of alkali-metal clusters: all-electron first-principles calculations. J Chem Phys 129:104104

    Article  PubMed  CAS  Google Scholar 

  53. Lu T, Chen F (2012) Multiwfn: A multifunctional wavefunction analyzer[J]. J Comput Chem 33(5):580–592

    Article  PubMed  CAS  Google Scholar 

  54. Chen Q, Wang H, Li H, Duan Q, Jiang D, Hou J (2020) Two-dimensional Mnc as a potential anode material for Na/K-ion batteries: a theoretical study. J Mol Model 26:1–6

    Article  CAS  Google Scholar 

  55. Wang D, Liu Y, Xing M, Wei Y, Gang C (2017) Two-dimensional Vs 2 monolayers as potential anode materials for lithium-ion batteries and beyond: first-principles calculations. J Mater Chem A :5

  56. Samad A, Shafique A, Shin YH (2017) Adsorption and diffusion of mono, di, and trivalent ions on two-dimensional Tis2. Nanotechnology

  57. Shewmon PG (2016) Diffusion in solids, 2nd edn. Springer International Publishers, Switzerland, pp 71–79

    Book  Google Scholar 

  58. Hultsch Roland Arthur, Barnes RG (1962) Pressure dependence of self-diffusion in lithium and sodium. Phys Rev 125(6):1832

    Article  CAS  Google Scholar 

  59. Makaremi M, Mortazavi B, Singh CV (2018) 2D Hydrogenated graphene-like borophene as a high capacity anode material for improved Li/Na ion batteries: a first principles study[J]. Materials Today Energy 8:22–28

    Article  Google Scholar 

  60. Mansouri Z, Sibari A, Al-Shami A et al (2022) Graphene/phosphorene nano-heterostructure as a potential anode material for (K/Na)-ion batteries: Insights from DFT and AIMD[J]. Comput Mater Sci 202:110936

    Article  CAS  Google Scholar 

  61. Jiang H, Zhao T, Ren Y, Zhang R, Wu M (2017) Ab initio prediction and characterization of phosphorene-like Sis and Sise as anode materials for sodium-ion batteries. Science Bulletin 62:572–578

    Article  CAS  Google Scholar 

  62. Wang H, Chen Q, Li H, Duan Q, Jiang D, Hou J (2019) Two-dimensional Janus Mosse as a potential anode material for Na/K-ion batteries: a theoretical study. Chem Phys Lett 735:136777

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Department of Science and Technology of Jilin Province (grant number 20190303069SF).

Author information

Authors and Affiliations

Authors

Contributions

Bingxin Mao: investigation, data curation, writing—original draft. Hui Li: writing—reviewing and editing. Qian Duan: writing—reviewing and editing, funding acquisition. Jianhua Hou: software, writing—reviewing and editing, project administration, formal analysis.

Corresponding authors

Correspondence to Qian Duan or Jianhua Hou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8810 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, B., Li, H., Duan, Q. et al. 2D phosphorus carbide as promising anode materials for Na/K-ion batteries from first-principles study. J Mol Model 28, 152 (2022). https://doi.org/10.1007/s00894-022-05144-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05144-5

Keywords

Navigation