Skip to main content
Log in

Rethinking the MtInhA tertiary and quaternary structure flexibility: a molecular dynamics view

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Flexibility and function are related properties in the study of protein dynamics. Flexibility reflects in the conformational potential of proteins and thus in their functionalities. The presence of interactions between protein-ligands and protein-protein complexes, substrates, and environmental changes can alter protein plasticity, acting from the rearrangement of the side chains of amino acids to the folding/unfolding of large structural motifs. To evaluate the effects of the flexibility in protein systems, we defined the enzyme 2-trans-enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis, or MtInhA, as our target system. MtInhA is biologically active as a tetramer in solution; however, computational studies commonly use the monomer justifying the independence of its active sites due to their distances. However, differences in flexibility between tertiary and quaternary structures could present impact on the size of the active site, influencing the drug discovery process. In this study, we investigated the influence of flexibility restrictions in A- and B-loops of the MtInhA in order to suggest a monomeric structure that describes the conformational behavior of the tetrameric system. Overall, we observed that simulations where restrictions were applied to the A- and B-loops present a more similar behavior to the native structure when compared to unrestricted simulations. Therefore, our work presents a monomeric model of MtInhA, which has conformational characteristics of the biologically active structure. Thus, the data obtained in this work can be applied to the MtInhA system for the generation of more reliable flexible models for molecular docking experiments, and also for the performance of longer simulations by molecular dynamics and with a lower computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable

Code availability

Not applicable

References

  1. Tsai CJ, Kumar S, Ma B, Nussinov R (1999) Folding funnels, binding funnels, and protein function. Protein Sci 8(6):1181–1190. https://doi.org/10.1110/ps.8.6.1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bahar I, Chennubhotla C, Tobi D (2007) Intrinsic dynamics of enzymes in the unbound state and relation to allosteric regulation. Curr Opin Struct Biol 17(6):633–640. https://doi.org/10.1016/j.sbi.2007.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Henzler-Wildman K, Kern D (2007) Dynamic personalities of proteins. Nature 450(7172):964–972. https://doi.org/10.1038/nature06522

    Article  CAS  PubMed  Google Scholar 

  4. Marsh JA, Hernández H, Hall Z, Ahnert SE, Perica T, Robinson CV, Teichmann SA (2013) Protein complexes are under evolutionary selection to assemble via ordered pathways. Cell 153(2):461–470. https://doi.org/10.1016/j.cell.2013.02.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marsh JA, Teichmann SA (2014) Protein flexibility facilitates quaternary structure assembly and evolution. PLoS Biol 12(5):e1001870. https://doi.org/10.1371/journal.pbio.1001870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Teilum K, Olsen JG (1814) Kragelund BB (2011) Protein stability, flexibility and function. Biochim Biophys Acta 8:969–976. https://doi.org/10.1016/j.bbapap.2010.11.005

    Article  CAS  Google Scholar 

  7. da Costa AL, Pauli I, Dorn M, Schroeder EK, Zhan CG, de Souza ON (2012) Conformational changes in 2-trans-enoyl-ACP (CoA) reductase (MtInhA) from M. tuberculosis induced by an inorganic complex: a molecular dynamics simulation study. J Mol Model 18(5):1779–1790 https://doi.org/10.1007/s00894-011-1200-7

  8. Kumar V, Sobhia ME (2013) Characterisation of the flexibility of substrate binding loop in the binding of direct InhA inhibitors. Int J Comput Biol Drug Des 6(4):318–342. https://doi.org/10.1504/IJCBDD.2013.056795

    Article  CAS  PubMed  Google Scholar 

  9. Kumar V, Sobhia ME (2014) Insights into the bonding pattern for characterizing the open and closed state of the substrate-binding loop in Mycobacterium tuberculosis InhA. Future Med Chem 6(6):605–616. https://doi.org/10.4155/fmc.14.27

    Article  CAS  PubMed  Google Scholar 

  10. Kumar V, Sobhia ME (2016) Molecular dynamics-based investigation of InhA substrate binding loop for diverse biological activity of direct InhA inhibitors. J Biomol Struct Dyn 34(11):2434–2452. https://doi.org/10.1080/07391102.2015.1118410

    Article  CAS  PubMed  Google Scholar 

  11. Lai CT, Li HJ, Yu W, Shah S, Bommineni GR, Perrone V, Garcia-Diaz M, Tonge PJ, Simmerling C (2015) Rational modulation of the induced-fit conformational change for slow-onset inhibition in Mycobacterium tuberculosis InhA. Biochemistry 54(30):4683–4691. https://doi.org/10.1021/acs.biochem.5b00284

    Article  CAS  PubMed  Google Scholar 

  12. Schroeder EK, Basso LA, Santos DS, de Souza ON (2005) Molecular dynamics simulation studies of the wild-type, I21V, and I16T mutants of isoniazid-resistant Mycobacterium tuberculosis enoyl reductase (MtInhA) in complex with NADH: toward the understanding of NADH-MtInhA different affinities. Biophys J 89(2):876–884. https://doi.org/10.1529/biophysj.104.053512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Takayama K, Wang C, Besra GS (2005) Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev 18(1):81–101. https://doi.org/10.1128/CMR.18.1.81-101.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Quémard A, Sacchettini JC, Dessen A, Vilcheze C, Bittman R, Jacobs WR Jr, Blanchard JS (1995) Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis. Biochemistry 34(26):8235–8241. https://doi.org/10.1021/bi00026a004

    Article  PubMed  Google Scholar 

  15. Pauli I, dos Santos RN, Rostirolla DC, Martinelli LK, Ducati RG, Timmers LF, Basso LA, Santos DS, Guido RV, Andricopulo AD, Norberto de Souza O (2013) Discovery of new inhibitors of Mycobacterium tuberculosis MtInhA enzyme using virtual screening and a 3D-pharmacophore-based approach. J Chem Inf Model 53(9):2390–2401. https://doi.org/10.1021/ci400202t

    Article  CAS  PubMed  Google Scholar 

  16. Shaw DJ, Hill RE, Simpson N, Husseini FS, Robb K, Greetham GM, Towrie M, Parker AW, Robinson D, Hirst JD, Hoskisson PA, Hunt NT (2017) Examining the role of protein structural dynamics in drug resistance in Mycobacterium tuberculosis. Chem Sci 8(12):8384–8399. https://doi.org/10.1039/c7sc03336b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Merget B, Sotriffer CA (2015) Slow-onset inhibition of Mycobacterium tuberculosis MtInhA: revealing molecular determinants of residence time by MD simulations. PloS One 10(5):e0127009. https://doi.org/10.1371/journal.pone.0127009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tarabini RF, Timmers L, Sequeiros-Borja CE, Norberto de Souza O (2019) The importance of the quaternary structure to represent conformational ensembles of the major Mycobacterium tuberculosis drug target. Sci Rep 9(1):13683. https://doi.org/10.1038/s41598-019-50213-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chollet A, Maveyraud L, Lherbet C, Bernardes-Génisson V (2018) An overview on crystal structures of MtInhA protein: Apo-form, in complex with its natural ligands and inhibitors. Eur J Med Chem 146:318–343. https://doi.org/10.1016/j.ejmech.2018.01.047

    Article  CAS  PubMed  Google Scholar 

  20. Qiu X, Janson CA, Court RI, Smyth MG, Payne DJ, Abdel-Meguid SS (1999) Molecular basis for triclosan activity involves a flipping loop in the active site. Protein Sci 8(11):2529–2532. https://doi.org/10.1110/ps.8.11.2529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dessen A, Quémard A, Blanchard JS, Jacobs WR Jr, Sacchettini JC (1995) Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Science (New York, N.Y.), 267(5204):1638–1641 https://doi.org/10.1126/science.7886450

  22. Rozwarski DA, Vilchèze C, Sugantino M, Bittman R, Sacchettini JC (1999) Crystal structure of the Mycobacterium tuberculosis enoyl-ACP reductase, MtInhA, in complex with NAD+ and a C16 fatty acyl substrate. J Biol Chem 274(22):15582–15589. https://doi.org/10.1074/jbc.274.22.15582

    Article  CAS  PubMed  Google Scholar 

  23. Case DA, Ben-Shalom IY, Brozell SR, Cerutti DS, Cheatham TE, Cruzeiro VWD, Kollman PA (2019) AMBER 2019. University of California, San Francisco

    Google Scholar 

  24. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11(8):3696–3713. https://doi.org/10.1021/acs.jctc.5b00255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein M (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  26. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690. https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  27. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341. https://doi.org/10.1016/0021-9991(77)90098-5

    Article  CAS  Google Scholar 

  28. Norberto de Souza O, Ornstein RL (1999) Molecular dynamics simulations of a protein-protein dimer: particle-mesh Ewald electrostatic model yields far superior results to standard cutoff model. J Biomol Struct Dyn 16(6):1205–1218. https://doi.org/10.1080/07391102.1999.10508328

    Article  CAS  PubMed  Google Scholar 

  29. Kagami LP, das Neves GM, Timmers LFSM, Caceres RA, Eifler-Lima VL (2020) Geo-Measures: A PyMOL plugin for protein structure ensembles analysis. Comput Biol Chemhttps://doi.org/10.1016/j.compbiolchem.2020.107322

  30. DeLano WL (2002) The PyMOL molecular graphics system on world wide web. https://www.pymol.org

  31. Plotly Technologies Inc. Collaborative data science. Porto Alegre, BR, 2021

Download references

Acknowledgements

We would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Funding

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, financial code 001).

Author information

Authors and Affiliations

Authors

Contributions

O.N.S. and L.F.S.M.T. designed the study. L.S.C. carried out the molecular dynamics simulations. L.S.C. and L.F.S.M.T performed the structural analysis. L.S.C., L.F.S.M.T., and O.N.S. analyzed the data. L.S.C., L.F.S.M.T., O.N.S., and L.A.B wrote the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Luís Fernando Saraiva Macedo Timmers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1654 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos Chitolina, L., Norberto de Souza, O., Basso, L.A. et al. Rethinking the MtInhA tertiary and quaternary structure flexibility: a molecular dynamics view. J Mol Model 28, 140 (2022). https://doi.org/10.1007/s00894-022-05135-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05135-6

Keywords

Navigation