Skip to main content
Log in

Determination of elastic constants of functionalized graphene-based epoxy nanocomposites: a molecular modeling and MD simulation study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Functionalization of graphene is the best way to create a high degree of dispersion and bonding to polymer matrix in order to obtain high performance composites. The effects of carboxyl (−COOH) functionalized graphene (FG) on the mechanical properties of its epoxy-based nanocomposites have been examined by molecular dynamics (MD) simulations. Simulations cells of nanocomposites with varying wt% of FG (1, 2, and 3 wt%) were constructed using Material Studio 6.0. The MD simulation findings of nanocomposites reveal that they have better mechanical properties such as elastic modulus, bulk modulus, shear modulus, and the Poisson’s ratio than pure epoxy. Furthermore, the computational results of nanocomposites have been effectively confirmed with available experimental data. Therefore, the current MD simulation shows a decent computational sign for the existing experimental and simulation outcomes on mechanical properties of FG/epoxy nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

NA.

Code availability

NA.

References

  1. Yu S, Yang S, Cho M (2009) Multi-scale modeling of cross-linked epoxy nanocomposites. Polymer. https://doi.org/10.1016/j.polymer.2008.11.054

    Article  Google Scholar 

  2. Fan HB, Yuen MMF (2007) Material properties of the cross-linked epoxy resin compound predicted by molecular dynamics simulation. Polymer. https://doi.org/10.1016/j.polymer.2007.02.007

    Article  Google Scholar 

  3. Nouri N, Ziaei-Rad S (2011) A molecular dynamics investigation on mechanical properties of cross-linked polymer networks. Macromolecules 44(13):5481–5489. https://doi.org/10.1021/ma2005519

    Article  CAS  Google Scholar 

  4. Li C, Strachan A (2010) Molecular simulations of crosslinking process of thermosetting polymers. Polymer 51(25):6058–6070. https://doi.org/10.1016/j.polymer.2010.10.033

    Article  CAS  Google Scholar 

  5. Varshney V, PatnaikS, Roy A, Farmer B (2008) A molecular dynamics study of epoxy-based networks: cross-linking procedure and prediction of molecular and material properties. Macromolecules 41 https://doi.org/10.1021/ma801153e

  6. Tack JL, Ford DM (2008) Thermodynamic and mechanical properties of epoxy resin DGEBF crosslinked with DETDA by molecular dynamics. J Mol Graph Model 26(8):1269–1275. https://doi.org/10.1016/j.jmgm.2007.12.001

    Article  CAS  PubMed  Google Scholar 

  7. Hörstermann H, Hentschke R, Amkreutz M, Hoffmann M, Wirts-Rütters M (2010) Predicting water sorption and volume swelling in dense polymer systems via computer simulation. J Phys Chem B 114(51):17013–17024. https://doi.org/10.1021/jp105210y

    Article  CAS  PubMed  Google Scholar 

  8. Wu C, Xu W (2007) Atomistic simulation study of absorbed water influence on structure and properties of crosslinked epoxy resin. Polymer 48(18):5440–5448. https://doi.org/10.1016/j.polymer.2007.06.038

    Article  CAS  Google Scholar 

  9. Liu H, Li M, Lu Z-Y, Zhang Z-G, Sun C-C, Cui T (2011) Multiscale simulation study on the curing reaction and the network structure in a typical epoxy system. Macromolecules 44 https://doi.org/10.1021/ma201390k

  10. Clancy TC, Frankland SJV, Hinkley JA, Gates TS (2009) Molecular modeling for calculation of mechanical properties of epoxies with moisture ingress. Polymer 50(12):2736–2742. https://doi.org/10.1016/j.polymer.2009.04.021

    Article  CAS  Google Scholar 

  11. Soni N, Lin P-H, Khare R (2012) Effect of cross-linker length on the thermal and volumetric properties of cross-linked epoxy networks: a molecular simulation study. Polymer 53:1015–1019. https://doi.org/10.1016/j.polymer.2011.12.051

    Article  CAS  Google Scholar 

  12. Chang S-H, Kim H-S (2011) Investigation of hygroscopic properties in electronic packages using molecular dynamics simulation. Polymer 52(15):3437–3442. https://doi.org/10.1016/j.polymer.2011.05.056

    Article  CAS  Google Scholar 

  13. Tsige M, Stevens MJ (2004) Effect of cross-linker functionality on the adhesion of highly cross-linked polymer networks: a molecular dynamics study of epoxies. Macromolecules 37(2):630–637. https://doi.org/10.1021/ma034970t

    Article  CAS  Google Scholar 

  14. Hölck O, Dermitzaki E, Wunderle B, Bauer J, Michel B (2011) Basic thermo-mechanical property estimation of a 3D-crosslinked epoxy/SiO2 interface using molecular modelling. Microelectron Reliab 51(6):1027–1034. https://doi.org/10.1016/j.microrel.2011.03.014

    Article  CAS  Google Scholar 

  15. Ionita M (2012) Multiscale molecular modeling of SWCNTs/epoxy resin composites mechanical behaviour. Compos Part 43(8):3491–3496. https://doi.org/10.1016/j.compositesb.2011.12.008

    Article  CAS  Google Scholar 

  16. Zhu R, Pan E, Roy AK (2007) Molecular dynamics study of the stress-strain behavior of carbon-nanotube reinforced Epon 862 composites. Mater Sci Eng A. https://doi.org/10.1016/j.msea.2006.10.054

    Article  Google Scholar 

  17. Li Y, Kröger M, Liu WK (2011) Primitive chain network study on uncrosslinked and crosslinked cis-polyisoprene polymers. Polymer 52(25):5867–5878. https://doi.org/10.1016/j.polymer.2011.10.044

    Article  CAS  Google Scholar 

  18. Wunderle B et al (2010) Molecular dynamics approach to structure–property correlation in epoxy resins for thermo-mechanical lifetime modeling. Microelectron Reliab 50(7):900–909. https://doi.org/10.1016/j.microrel.2010.02.024

    Article  CAS  Google Scholar 

  19. Yarovsky I, Evans E (2002) Computer simulation of structure and properties of crosslinked polymers: application to epoxy resins. Polymer 43(3):963–969. https://doi.org/10.1016/S0032-3861(01)00634-6

    Article  CAS  Google Scholar 

  20. Novoselov KS et al (2004) Electric field in atomically thin carbon films. Science. https://doi.org/10.1126/science.1102896

    Article  PubMed  Google Scholar 

  21. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. https://doi.org/10.1126/science.1157996

    Article  PubMed  PubMed Central  Google Scholar 

  22. Smith AT, LaChance AM, Zeng S, Liu B, Sun L (2019) Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater Sci 1(1):31–47. https://doi.org/10.1016/j.nanoms.2019.02.004

    Article  Google Scholar 

  23. Fukushima H, Drzal LT, Rook BP, Rich MJ (2006) Thermalconductivity of exfoliated graphite nanocomposites. J Therm Anal Calorim 85(1):235–238. https://doi.org/10.1007/s10973-005-7344-x

    Article  CAS  Google Scholar 

  24. Kumar A, Sharma K, Dixit A (2020) A review on the mechanical properties of polymer composites reinforced by carbon nanotubes and graphene. Carbon Lett 31 https://doi.org/10.1007/s42823-020-00161-x

  25. Moser J, Barreiro A, Bachtold A (2007) Current-induced cleaning of graphene. Appl Phys Lett 91:163513. https://doi.org/10.1063/1.2789673

    Article  CAS  Google Scholar 

  26. Thillaiyan R et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331. https://doi.org/10.1038/nnano.2008.96

    Article  CAS  Google Scholar 

  27. Qin Y et al (2015) Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application. ACS Nano 9(9):8933–8941. https://doi.org/10.1021/acsnano.5b02781

    Article  CAS  PubMed  Google Scholar 

  28. Liang J et al (2009) Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater. https://doi.org/10.1002/adfm.200801776

    Article  Google Scholar 

  29. Kumar A, Sharma K, Dixit A (2020) Carbon nanotube- and graphene-reinforced multiphase polymeric composites: review on their properties and applications. J Mater Sci 55 https://doi.org/10.1007/s10853-019-04196-y

  30. Qi B, Yu J (2014) Enhanced thermal and mechanical properties of epoxy composites by mixing thermotropic liquid crystalline epoxy grafted graphene oxide. Express Polym Lett 8:467–479. https://doi.org/10.3144/expresspolymlett.2014.51

    Article  CAS  Google Scholar 

  31. Nayebi P, Zaminpayma E (2016) A molecular dynamic simulation study of mechanical properties of graphene–polythiophene composite with Reax force field. Phys Lett A 380(4):628–633. https://doi.org/10.1016/j.physleta.2015.11.026

    Article  CAS  Google Scholar 

  32. Lee M-W, Wang T-Y, Tsai J-L (2016) Mechanical properties of nanocomposites with functionalized graphene. J Compos Mater 50(27):3779–3789. https://doi.org/10.1177/0021998315625788

    Article  CAS  Google Scholar 

  33. Lin F, Xiang Y, Shen H-S (2017) Temperature dependent mechanical properties of graphene reinforced polymer nanocomposites – a molecular dynamics simulation. Compos Part B 111:261–269. https://doi.org/10.1016/j.compositesb.2016.12.004

    Article  CAS  Google Scholar 

  34. Shen XJ, Liu Y, Xiao HM, Feng QP, Yu ZZ, Fu SY (2012) The reinforcing effect of graphene nanosheets on the cryogenic mechanical properties of epoxy resins. Compos Sci Technol. https://doi.org/10.1016/j.compscitech.2012.06.021

    Article  Google Scholar 

  35. Yu H, Tong Z, Chen P, Cai A, Qin F (2020) Effects of different parameters on thermal and mechanical properties of aminated graphene/epoxy nanocomposites connected by covalent: a molecular dynamics study. Curr Appl Phys 20:510–518

    Article  Google Scholar 

  36. Sharma K, Sen Kaushalyayan K, Shukla M (2015) Pull-out simulations of interfacial properties of amine functionalized multi-walled carbon nanotube epoxy composites. Comput Mater Sci 99:232–241. https://doi.org/10.1016/j.commatsci.2014.12.023

    Article  CAS  Google Scholar 

  37. Sharma K, Shukla DM (2014) Molecular modeling of the mechanical behavior of carbon fiber-amine functionalized multiwall carbon nanotube/epoxy composites. New Carbon Mater 29:132–142. https://doi.org/10.1016/S1872-5805(14)60131-1

    Article  CAS  Google Scholar 

  38. Lu C, Xue Q, Xia D, Ma M (2012) Effect of chemisorption structure on the interfacial bonding characteristics of graphene–polymer composites. Appl Surf Sci 258:2077–2082. https://doi.org/10.1016/j.apsusc.2011.04.056

    Article  CAS  Google Scholar 

  39. Shokuhfar A, Arab B (2013) The effect of cross linking density on the mechanical properties and structure of the epoxy polymers: molecular dynamics simulation. J Mol Model 19 https://doi.org/10.1007/s00894-013-1906-9

  40. Jeyranpour F, Alahyarizadeh G, Arab B (2015) Comparative investigation of thermal and mechanical properties of cross-linked epoxy polymers with different curing agents by molecular dynamics simulation. J Mol Graph Model. https://doi.org/10.1016/j.jmgm.2015.09.012

    Article  PubMed  Google Scholar 

  41. Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase applicationsoverview with details on alkane and benzene compounds. J Phys Chem B 102(38):7338–7364. https://doi.org/10.1021/jp980939v

    Article  CAS  Google Scholar 

  42. Berendsen H, Postma JPM, van Gunsteren W, DiNola AD, Haak JR (1984) Molecular-dynamics with coupling to an external bath. J Chem Phys 81:3684. https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  43. Khameneh F, Alahyarizadeh G, Minuchehr H (2016) The thermo-mechanical properties estimation of fullerene-reinforced resin epoxy composites by molecular dynamics simulation- a comparative study. Polyme 88 https://doi.org/10.1016/j.polymer.2016.02.018

  44. Zhou Z, Joó B Fluctuation formulas for the elastic constants of an arbitrary system. Phys Rev B 66 https://doi.org/10.1103/PhysRevB.66.054101

  45. Han Y, Elliott J (2007) Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput Mater Sci 39(2):315–323. https://doi.org/10.1016/j.commatsci.2006.06.011

    Article  CAS  Google Scholar 

  46. Theodorou DN, Suter UW (1986) Atomistic modeling of mechanical properties of polymeric glasses. Macromolecules 19(1):139–154. https://doi.org/10.1021/ma00155a022

    Article  CAS  Google Scholar 

  47. Sun R, Li L, Feng C, Kitipornchai S, Yang J (2018) Tensile behavior of polymer nanocomposite reinforced with graphene containing defects. Eur Polym J 98:475–482. https://doi.org/10.1016/j.eurpolymj.2017.11.050

    Article  CAS  Google Scholar 

  48. Rafiee MA et al (2010) Graphene nanoribbon composites. ACS Nano 4(12):7415–7420. https://doi.org/10.1021/nn102529n

    Article  CAS  PubMed  Google Scholar 

  49. Skountzos EN, Anastassiou A, Mavrantzas VG, Theodorou DN (2014) Determination of the mechanical properties of a poly(methyl methacrylate) nanocomposite with functionalized graphene sheets through detailed atomistic simulations. Macromolecules 47(22):8072–8088. https://doi.org/10.1021/ma5017693

    Article  CAS  Google Scholar 

  50. Yadav SK, Cho JW (2013) Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2012.12.028

    Article  Google Scholar 

  51. Wang F, Drzal L, Qin Y, Huang Z (2016) Size effect of graphene nanoplatelets on the morphology and mechanical behavior of glass fiber/epoxy composites. J Mater Sci 51:1–12. https://doi.org/10.1007/s10853-015-9649-x

    Article  CAS  Google Scholar 

  52. Zunjarrao SC, Singh RP (2006) Characterization of the fracture behavior of epoxy reinforced with nanometer and micrometer sized aluminum particles. Compos Sci Technol. https://doi.org/10.1016/j.compscitech.2005.12.001

    Article  Google Scholar 

  53. Wan Y-J, Gong L-X, Tang L-C, Wu L-B, Jiang J-X (2014) Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide. Compos Part A 64:79–89. https://doi.org/10.1016/j.compositesa.2014.04.023

    Article  CAS  Google Scholar 

  54. Her S, Chen L (2019) Fabrication and characterization of graphene/epoxy nanocomposites. Mater Sci 25:433–440. https://doi.org/10.5755/j01.ms.25.4.19462

    Article  Google Scholar 

  55. Li K-Y et al (2014) Preparation and properties of novel epoxy/graphene oxide nanosheets (GON) composites functionalized with flame retardant containing phosphorus and silicon. Mater Chem Phys 146:354–362. https://doi.org/10.1016/j.matchemphys.2014.03.037

    Article  CAS  Google Scholar 

  56. Yang S, Shin H, Cho M (2021) Contribution of oxygen functional groups in graphene to the mechanical and interfacial behaviour of nanocomposites: molecular dynamics and micromechanics study. Int J Mech Sci. https://doi.org/10.1016/j.ijmecsci.2020.105972

    Article  Google Scholar 

  57. Yao H, Hawkins SA, Sue H-J (2017) Preparation of epoxy nanocomposites containing well-dispersed graphene nanosheets. Compos Sci Technol 146:161–168. https://doi.org/10.1016/j.compscitech.2017.04.026

    Article  CAS  Google Scholar 

  58. Galpaya D, Wang M, George G, Motta N, Waclawik E, Yan C (2014) Preparation of graphene oxide/epoxy nanocomposites with significantly improved mechanical properties. J Appl Phys 116:53518. https://doi.org/10.1063/1.4892089

    Article  CAS  Google Scholar 

  59. Qian Y, Lan Y, Xu J, Ye F, Dai S (2014) Fabrication of polyimide-based nanocomposites containing functionalized graphene oxide nanosheets by in-situ polymerization and their properties. Appl Surf Sci 314:991–999. https://doi.org/10.1016/j.apsusc.2014.06.130

    Article  CAS  Google Scholar 

  60. Wang T-Y, Tseng P-Y, Tsai J-L (2018) Characterization of Young’s modulus and thermal conductivity of graphene/epoxy nanocomposites. J Compos Mater 53(6):835–847. https://doi.org/10.1177/0021998318791681

    Article  CAS  Google Scholar 

  61. Potts JR et al (2011) Thermomechanical properties of chemically modified graphene/poly(methyl methacrylate) composites made by in situ polymerization. Carbon 49(8):2615–2623. https://doi.org/10.1016/j.carbon.2011.02.023

    Article  CAS  Google Scholar 

  62. Yadav A, Kumar A, Sharma K, Shukla M (2019) Investigating the effects of amine functionalized graphene on the mechanical properties of epoxy nanocomposites. Mater Today Proc 11:837–842. https://doi.org/10.1016/j.matpr.2019.03.054

    Article  CAS  Google Scholar 

  63. Rafiee M, Rafiee J, Wang Z, Song H-H, Yu Z-Z, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890. https://doi.org/10.1021/nn9010472

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Aman Yadav: conceptualization, modeling and simulation, methodology, formal analysis, investigation, visualization, writing – original draft, and writing – review and editing; Amit Kumar: supervision and writing – review and editing. Kamal Sharma: writing – review and editing. A.K. Pandey: writing – review and editing.

Corresponding authors

Correspondence to Aman Yadav or Amit Kumar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A., Kumar, A., Sharma, K. et al. Determination of elastic constants of functionalized graphene-based epoxy nanocomposites: a molecular modeling and MD simulation study. J Mol Model 28, 143 (2022). https://doi.org/10.1007/s00894-022-05134-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05134-7

Keywords

Navigation