Skip to main content

Advertisement

Log in

Integrated virtual screening and molecular dynamics simulation revealed promising drug candidates of p53-MDM2 interaction

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In the vast majority of malignancies, the p53 tumor suppressor pathway is compromised. In some cancer cells, high levels of MDM2 polyubiquitinate p53 and mark it for destruction, thereby leading to a corresponding downregulation of the protein. MDM2 interacts with p53 via its hydrophobic pocket, and chemical entities that block the dimerization of the protein–protein complex can restore p53 activity. Thus far, only a few chemical compounds have been reported as potent arsenals against p53-MDM2. The Protein Data Bank has crystallogaphic structures of MDM2 in complex with certain compounds. Herein, we have exploited one of the complexes in the identification of new p53-MDM2 antagonists using a hierarchical virtual screening technique. The initial stage was to compile a targeted library of structurally appropriate compounds related to a known effective inhibitor, Nutlin 2, from the PubChem database. The identified 57 compounds were subjected to virtual screening using molecular docking to discover inhibitors with high binding affinity for MDM2. Consequently, five compounds with higher binding affinity than the standard emerged as the most promising therapeutic candidates. When compared to Nutlin 2, four of the drug candidates (CID_140017825, CID_69844501, CID_22721108, and CID_22720965) demonstrated satisfactory pharmacokinetic and pharmacodynamic profiles. Finally, MD simulation of the dynamic behavior of lead-protein complexes reveals the stability of the complexes after a 100,000 ps simulation period. In particular, when compared to the other three leads, overall computational modeling found CID_140017825 to be the best pharmacological candidate. Following thorough experimental trials, it may emerge as a promising chemical entity for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Available on request.

Code availability

Not applicable.

References

  1. Adelusi TI, Abdul-Hammed M, Idris MO, Kehinde OQ, Boyenle ID, Divine UC, Adedotun IO, Folorunsho AA, Kolawole OE (2021) Exploring the inhibitory potentials of Momordicacharantia bioactive compounds against Keap1-Kelch protein using computational approaches. In Silico Pharmacol 9(1):39. https://doi.org/10.1007/s40203-021-00100-2

    Article  PubMed  Google Scholar 

  2. Adelusi TI, Abdul-Hammed M, Idris MO, Oyedele QK, Adedotun IO (2021) Molecular dynamics, quantum mechanics and docking studies of some Keap1 inhibitors - an insight into the atomistic mechanisms of their antioxidant potential. Heliyon 7(6):e07317. https://doi.org/10.1016/j.heliyon.2021.e07317

    Article  PubMed  PubMed Central  Google Scholar 

  3. Adelusi TI, Abdul-Hammed M, Ojo EM, Oyedele QK, Boyenle ID, Adedotun IO, Olaoba OT, Folorunsho AA, Kolawole OE (2021) Molecular docking assessment of clinically approved antiviral drugs against mpro, spike glycoprotein and angiotensin converting enzyme-2 revealed probable anti-SARS-CoV-2 potential. Trop J Nat Prod Res. 5(4):778–791

    Article  CAS  Google Scholar 

  4. Adelusi TI, Oyedele AK, Monday OE, Boyenle ID, Idris MO, Ogunlana AT, Ayoola AM, Fatoki JO, Kolawole OE, David KB, Olayemi AA (2021) Dietary polyphenols mitigate SARS-CoV-2 main protease (Mpro) - molecular dynamics, molecular mechanics, and density functional theory investigations. J Mol Struct 11:131879. https://doi.org/10.1016/j.molstruc.2021.131879

    Article  CAS  Google Scholar 

  5. Adelusi TI, Oyedele AK, Boyenle ID, Ogunlana AT, Adeyemi RO, Ukachi CD, Idris MO, Olaoba OT, Adedotun IO, Kolawole OE, Xiaoxing Y, Abdul-Hammed M (2022) Molecular modeling in drug discovery. Inform Med Unlocked 29:100880. https://doi.org/10.1016/j.imu.2022.100880

    Article  Google Scholar 

  6. Allen JG, Bourbeau MP, Wohlhieter GE, Bartberger MD, Michelsen K, Hungate R, Gadwood RC, Gaston RD, Evans B, Mann LW, Matison ME, Schneider S, Huang X, Yu D, Andrews PS, Reichelt A, Long AM, Yakowec P, Yang EY, Lee TA, Oliner JD (2009) Discovery and optimization of chromenotriazolopyrimidines as potent inhibitors of the mouse double minute 2-tumor protein 53 protein-protein interaction. J Med Chem 52(22):7044–7053. https://doi.org/10.1021/jm900681h

    Article  CAS  PubMed  Google Scholar 

  7. Almerico AM, Tutone M, Pantano L, Lauria A (2012) Molecular dynamics studies on Mdm2 complexes: an analysis of the inhibitor influence. Biochem Biophys Res Commun 424(2):341–347. https://doi.org/10.1016/j.bbrc.2012.06.138

    Article  CAS  PubMed  Google Scholar 

  8. Boyenle ID, Divine UC, Adeyemi R, Ayinde KS, Olaoba OT, Apu C, Du L, Lu Q, Yin X, Adelusi TI (2021) Direct Keap1-kelch inhibitors as potential drug candidates for oxidative stress-orchestrated diseases: a review on Insilico perspective. Pharmacol Res 167:105577. https://doi.org/10.1016/j.phrs.2021.105577

    Article  CAS  PubMed  Google Scholar 

  9. Boyenle ID, Adelusi TI, Ogunlana AT, Oluwabusola RA, Ibrahim NO, Tolulope A, Okikiola OS, Adetunji BL, Abioye IO, Oyedele AQ (2022) Consensus scoring-based virtual screening and molecular dynamics simulation of some TNF-alpha inhibitors. Inform Med Unlocked 28:100833. https://doi.org/10.1016/j.imu.2021.100833

    Article  Google Scholar 

  10. Brindisi M, Brogi S, Relitti N, Vallone A, Butini S, Gemma S, Novellino E, Colotti G, Angiulli G, Di Chiaro F, Fiorillo A, Ilari A, Campiani G (2015) Structure-based discovery of the first non-covalent inhibitors of Leishmania major tryparedoxin peroxidase by high throughput docking. Sci Rep 5:9705. https://doi.org/10.1038/srep09705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carry JC, Garcia-Echeverria C (2013) Inhibitors of the p53/hdm2 protein-protein interaction-path to the clinic. Bioorg Med Chem Lett 23(9):2480–2485. https://doi.org/10.1016/j.bmcl.2013.03.034

    Article  CAS  PubMed  Google Scholar 

  12. Chemi G, Gemma S, Campiani G, Brogi S, Butini S, Brindisi M (2017) Computational tool for fast in silico evaluation of hERG K+ channel affinity. Front Chem 5:7. https://doi.org/10.3389/fchem.2017.00007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen D, Oezguen N, Urvil P, Ferguson C, Dann SM, Savidge TC (2016) Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci Adv 2(3):e1501240. https://doi.org/10.1126/sciadv.1501240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen J, Wang J, Xu B, Zhu W, Li G (2011) Insight into mechanism of small molecule inhibitors of the MDM2-p53 interaction: molecular dynamics simulation and free energy analysis. J Mol Graph Model 30:46–53. https://doi.org/10.1016/j.jmgm.2011.06.003

    Article  CAS  PubMed  Google Scholar 

  15. Chen J, Wang J, Zhu W, Li G (2013) A computational analysis of binding modes and conformation changes of MDM2 induced by p53 and inhibitor bindings. J Comput Aided Mol Des 27(11):965–974. https://doi.org/10.1007/s10822-013-9693-z

    Article  CAS  PubMed  Google Scholar 

  16. Chen J, Wang J, Zhang Q, Chen K, Zhu W (2015) Probing origin of binding difference of inhibitors to MDM2 and MDMX by polarizable molecular dynamics simulation and QM/MM-GBSA calculation. Sci Rep 5:17421. https://doi.org/10.1038/srep17421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gao Y, Mei Y, Zhang JZ (2015) Treatment of hydrogen bonds in protein simulations. In: Liu J (ed) Advanced materials for renewable hydrogen production, storage and utilization. IntechOpen, pp 121–136

    Google Scholar 

  18. Grasberger BL, Lu T, Schubert C, Parks DJ, Carver TE, Koblish HK, Cummings MD, LaFrance LV, Milkiewicz KL, Calvo RR, Maguire D, Lattanze J, Franks CF, Zhao S, Ramachandren K, Bylebyl GR, Zhang M, Manthey CL, Petrella EC, Pantoliano MW, Deckman IC, Spurlino JC, Maroney AC, Tomczuk BE, Molloy CJ, Bone RF (2005) Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. J Med Chem 48(4):909–912. https://doi.org/10.1021/jm049137g

    Article  CAS  PubMed  Google Scholar 

  19. Hosea NA, Jones HM (2013) Predicting pharmacokinetic profiles using in silico derived parameters. Mol Pharm 10(4):1207–1215. https://doi.org/10.1021/mp300482w

    Article  CAS  PubMed  Google Scholar 

  20. Hsu KC, Chen YF, Lin SR, Yang JM (2011) iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics 12 Suppl 1(Suppl 1):S33. https://doi.org/10.1186/1471-2105-12-S1-S33

  21. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J, Yu B, Zhang J, Bryant SH (2016) PubChem substance and compound databases. Nucleic Acids Res 44(D1):D1202–D1213. https://doi.org/10.1093/nar/gkv951

    Article  CAS  PubMed  Google Scholar 

  22. Lauria A, Tutone M, Ippolito M, Pantano L, Almerico AM (2010) Molecular modeling approaches in the discovery of new drugs for anti-cancer therapy: the investigation of p53-MDM2 interaction and its inhibition by small molecules. Curr Med Chem 17(28):3142–3154. https://doi.org/10.2174/092986710792232021

    Article  CAS  PubMed  Google Scholar 

  23. Leão M, Gomes S, Pedraza-Chaverri J, Machado N, Sousa E, Pinto M, Inga A, Pereira C, Saraiva L (2013) Α-mangostin and gambogic acid as potential inhibitors of the p53-MDM2 interaction revealed by a yeast approach. J Nat Prod 76(4):774–778. https://doi.org/10.1021/np400049j

    Article  CAS  PubMed  Google Scholar 

  24. Leão M, Pereira C, Bisio A, Ciribilli Y, Paiva AM, Machado N, Palmeira A, Fernandes MX, Sousa E, Pinto M, Inga A, Saraiva L (2013) Discovery of a new small-molecule inhibitor of p53-MDM2 interaction using a yeast-based approach. Biochem Pharmacol 85(9):1234–1245. https://doi.org/10.1016/j.bcp.2013.01.032

    Article  CAS  PubMed  Google Scholar 

  25. Leão M, Soares J, Gomes S, Raimundo L, Ramos H, Bessa C, Queiroz G, Domingos S, Pinto M, Inga A, Cidade H, Saraiva L (2015) Enhanced cytotoxicity of prenylatedchalcone against tumour cells via disruption of the p53-MDM2 interaction. Life Sci 142:60–65. https://doi.org/10.1016/j.lfs.2015.10.015

    Article  CAS  PubMed  Google Scholar 

  26. Lee JH, Zhang Q, Jo S, Chai SC, Oh M, Im W, Lu H, Lim HS (2011) Novel pyrrolopyrimidine-based α-helix mimetics: cell-permeable inhibitors of protein−protein interactions. J Am Chem Soc 133(4):676–679. https://doi.org/10.1021/ja108230s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liao KH, Chen KB, Lee WY, Sun MF, Lee CC, Chen CY (2014) Ligand-based and structure-based investigation for Alzheimer’s disease from traditional Chinese medicine. Evid Based Complement Alternat Med 2014:364819. https://doi.org/10.1155/2014/364819

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu K, Watanabe E, Kokubo H (2017) Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations. J Comput Aided Mol Des 31(2):201–211. https://doi.org/10.1007/s10822-016-0005-2

    Article  CAS  PubMed  Google Scholar 

  29. Liu X, Shi D, Zhou S, Liu H, Liu H, Yao X (2018) Molecular dynamics simulations and novel drug discovery. Expert Opin Drug Discov 13(1):23–37. https://doi.org/10.1080/17460441.2018.1403419

    Article  CAS  PubMed  Google Scholar 

  30. Lynch T, Price A (2007) The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician 76(3):391–396

    PubMed  Google Scholar 

  31. Macchiarulo A, Giacchè N, Carotti A, Baroni M, Cruciani G, Pellicciari R (2008) Targeting the conformational transitions of MDM2 and MDMX: insights into dissimilarities and similarities of p53 recognition. J Chem Inf Model 48(10):1999–2009. https://doi.org/10.1021/ci800146m

    Article  CAS  PubMed  Google Scholar 

  32. Mazola Y, Guirola O, Palomares S, Chinea G, Menéndez C, Hernández L, Musacchio A (2015) A comparative molecular dynamics study of thermophilic and mesophilic β-fructosidase enzymes. J Mol Model 21(9):228. https://doi.org/10.1007/s00894-015-2772-4

    Article  CAS  PubMed  Google Scholar 

  33. Patel S, Player MR (2008) Small-molecule inhibitors of the p53-HDM2 interaction for the treatment of cancer. Expert Opin Investig Drugs 17(12):1865–1882. https://doi.org/10.1517/13543780802493366

    Article  CAS  PubMed  Google Scholar 

  34. Pires DE, Blundell TL, Ascher DB (2015) pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58(9):4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Raj BV, Rao MR, Acharya Y (2017) Structure based virtual screening, docking and molecular dynamic simulation studies to identify potent mdm2-p53 inhibitors: future implications for cancer therapy. Acta Med Int 4:11–21. https://doi.org/10.5530/ami.2017.4.3

    Article  Google Scholar 

  36. Rew Y, Sun D, Gonzalez-Lopez De Turiso F, Bartberger MD, Beck HP, Canon J, Chen A, Chow D, Deignan J, Fox BM, Gustin D, Huang X, Jiang M, Jiao X, Jin L, Kayser F, Kopecky DJ, Li Y, Lo MC, Long AM, Michelsen K, Oliner JD, Osgood T, Ragains M, Saiki AY, Schneider S, Toteva M, Yakowec P, Yan X, Ye Q, Yu D, Zhao X, Zhou J, Medina JC, Olson SH (2012) Structure-based design of novel inhibitors of the MDM2-p53 interaction. J Med Chem 55(11):4936–54. https://doi.org/10.1021/jm300354j

  37. Riaz M, Ashfaq UA, Qasim M, Yasmeen E, UlQamar MT, Anwar F (2017) Screening of medicinal plant phytochemicals as natural antagonists of p53-MDM2 interaction to reactivate p53 functioning. Anticancer Drugs 28(9):1032–1038. https://doi.org/10.1097/CAD.0000000000000548

    Article  CAS  PubMed  Google Scholar 

  38. Schüttelkopf AW, van Aalten DM (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D BiolCrystallogr 60(Pt 8):1355–1363. https://doi.org/10.1107/S0907444904011679

    Article  CAS  Google Scholar 

  39. Sirous H, Chemi G, Campiani G, Brogi S (2019) An integrated in silico screening strategy for identifying promising disruptors of p53-MDM2 interaction. Comput Biol Chem 83:107105. https://doi.org/10.1016/j.compbiolchem.2019.107105

    Article  CAS  PubMed  Google Scholar 

  40. Tovar C, Rosinski J, Filipovic Z, Higgins B, Kolinsky K, Hilton H, Zhao X, Vu BT, Qing W, Packman K, Myklebost O, Heimbrook DC, Vassilev LT (2006) Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci USA 103(6):1888–1893. https://doi.org/10.1073/pnas.0507493103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Trott O, Olson AJ (2010) AutoDockVina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718. https://doi.org/10.1002/jcc.20291

    Article  CAS  Google Scholar 

  43. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu EA (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303(5659):844–848. https://doi.org/10.1126/science.1092472

    Article  CAS  PubMed  Google Scholar 

  44. Warner WA, Sanchez R, Dawoodian A, Li E, Momand J (2012) Identification of FDA-approved drugs that computationally bind to MDM2. Chem Biol Drug Des 80(4):631–637. https://doi.org/10.1111/j.1747-0285.2012.01428.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Watson AF, Liu J, Bennaceur K, Drummond CJ, Endicott JA, Golding BT, Griffin RJ, Haggerty K, Lu X, McDonnell JM, Newell DR, Noble ME, Revill CH, Riedinger C, Xu Q, Zhao Y, Lunec J, Hardcastle IR (2011) MDM2-p53 protein-protein interaction inhibitors: a-ring substituted isoindolinones. Bioorg Med Chem Lett 21(19):5916–5919. https://doi.org/10.1016/j.bmcl.2011.07.084

    Article  CAS  PubMed  Google Scholar 

  46. Xiong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C, Yin M, Zeng X, Wu C, Lu A, Chen X, Hou T, Cao D (2021) ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res 49(W1):W5-W14. https://doi.org/10.1093/nar/gkab255

  47. Zaccagnini L, Brogi S, Brindisi M, Gemma S, Chemi G, Legname G, Campiani G, Butini S (2017) Identification of novel fluorescent probes preventing PrPSc replication in prion diseases. Eur J Med Chem 127:859–873. https://doi.org/10.1016/j.ejmech.2016.10.064

    Article  CAS  PubMed  Google Scholar 

  48. Zhao Y, Aguilar A, Bernard D, Wang S (2015) Small-molecule inhibitors of the MDM2-p53 protein-protein interaction (MDM2 Inhibitors) in clinical trials for cancer treatment. J Med Chem 58(3):1038–1052. https://doi.org/10.1021/jm501092z

    Article  CAS  PubMed  Google Scholar 

  49. Zhao Y, Bernard D, Wang S (2013) Small molecule inhibitors of MDM2-p53 and MDMX-p53 interactions as new cancer therapeutics. BioDiscovery 8(8):4. https://doi.org/10.7750/BioDiscovery.s

    Article  Google Scholar 

  50. Zhuang C, Miao Z, Zhu L, Dong G, Guo Z, Wang S, Zhang Y, Wu Y, Yao J, Sheng C, Zhang W (2012) Discovery, synthesis, and biological evaluation of orally active pyrrolidone derivatives as novel inhibitors of p53-MDM2 protein-protein interaction. J Med Chem 55(22):9630–9642. https://doi.org/10.1021/jm300969t

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Abdul-Quddus Kehinde Oyedele- conceptualization, writing (original draft), formal analysis, and investigation. Ibrahim Damilare Boyenle- conceptualization, formal analysis, and investigation. Temitope Isaac Adelusi- writing (review and editing). Abdeen Tunde Ogunlana- formal analysis and investigation. Rofiat Oluwabusola Adeyemi- data curation. Opeyemi Emmanuel Atanda- software and visualization. Musa Oladayo Babalola- review and editing. Mojeed Ayoola Ashiru- data curation. Isong Josiah Ayoola- software and visualization.

Corresponding author

Correspondence to Ibrahim Damilare Boyenle.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oyedele, AQ.K., Adelusi, T.I., Ogunlana, A.T. et al. Integrated virtual screening and molecular dynamics simulation revealed promising drug candidates of p53-MDM2 interaction. J Mol Model 28, 142 (2022). https://doi.org/10.1007/s00894-022-05131-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05131-w

Keywords

Navigation