Skip to main content
Log in

Separation of CH4, H2S, N2 and CO2 gases using four types of nanoporous graphene cluster model: a quantum chemical investigation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Nanoporous graphene is being regarded as a promising candidate for reliable gas separation and purification applications. In the present research, the permeation barrier, selectivity and all thermodynamic functions for passing of four different molecules including CH4, H2S, N2 and CO2 gases on four types of porous graphene which is doped by two, three and six nitrogen atoms using quantum mechanical modelling, based on the density functional theory, B97D, and cc-pVTZ basis set have been evaluated. We find that the permeation barrier of all studied gases especially carbon dioxide decreased by considering the functionalized porous graphene by two, three and six nitrogens–doped, respectively. The results of our study propose using a porous graphene sheet as highly efficient and highly selective membranes for gas separations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Kumar R, Kumar A, Singh R et al (2020) Room temperature ammonia gas sensor using Meta Toluic acid functionalized graphene oxide. Mater Chem Phys 240:121922

    Article  CAS  Google Scholar 

  2. Hosseingholipourasl A, Hafizah Syed Ariffin S, Al-Otaibi YD et al (2020) Analytical approach to study sensing properties of graphene based gas sensor. Sensors 20(5):1506

    Article  CAS  PubMed Central  Google Scholar 

  3. Demon SZ, Kamisan AI, Abdullah N et al (2020) Graphene-based materials in gas sensor applications: a review. Sens Mater 32(2):759–777

    CAS  Google Scholar 

  4. Pawar D, Kanawade R, Kumar A et al (2020) High-performance dual cavity-interferometric volatile gas sensor utilizing graphene/PMMA nanocomposite. Sensor Actuat B Chem :127921

  5. Xu B, Huang J, Xu X et al (2019) Ultrasensitive NO gas sensor based on the graphene oxide-coated long-period fiber grating. ACS Appl Mater Interfaces 11(43):40868–40874

    Article  CAS  PubMed  Google Scholar 

  6. Szczęśniak B, Choma J (2020) Graphene-containing microporous composites for selective CO2 adsorption. Microporous Mesoporous Mater 292:109761

    Article  Google Scholar 

  7. Nikkho S, Mirzaei M, Sabet JK et al (2020) Enhanced quality of transfer-free graphene membrane for He/CH4 separation. Sep Purif Technol 232:115972

    Article  CAS  Google Scholar 

  8. Ali A, Aamir M, Thebo KH et al (2020) Laminar graphene oxide membranes towards selective ionic and molecular separations: challenges and progress. Chem Rec 20(4):344–354

    Article  CAS  PubMed  Google Scholar 

  9. Hossain S, Abdalla AM, Suhaili SB et al (2020) Nanostructured graphene materials utilization in fuel cells and batteries: a review. J Energy Storage 29:101386

    Article  Google Scholar 

  10. Park C, Lee E, Lee G et al (2020) Superior durability and stability of Pt electrocatalyst on N-doped graphene-TiO2 hybrid material for oxygen reduction reaction and polymer electrolyte membrane fuel cells. Appl Catal B Environ 268:118414

    Article  CAS  Google Scholar 

  11. Lavanya G, Paradesi D, Hemalatha P (2020) Development of proton conducting polymer nanocomposite membranes based on SPVdF-HFP and graphene oxide for H2-O2 fuel cells. J Macromol Sci A 57(4):283–290

    Article  CAS  Google Scholar 

  12. Poolnapol L, Kao-ian W, Somwangthanaroj A et al (2020) Silver decorated reduced graphene oxide as electrocatalyst for zinc–air batteries. Energies 13(2):462

    Article  CAS  Google Scholar 

  13. ElMekawy A, Hegab HM, Losic D et al (2017) Applications of graphene in microbial fuel cells: the gap between promise and reality. Renew Sust Energ Rev 72:1389–1403

    Article  CAS  Google Scholar 

  14. Bollella P, Fusco G, Tortolini C et al (2017) Beyond graphene: electrochemical sensors and biosensors for biomarkers detection. J Biosens Bioelectron 89(1):152–166

    Article  CAS  Google Scholar 

  15. Call TP, Carey T, Bombelli P et al (2017) Platinum-free, graphene based anodes and air cathodes for single chamber microbial fuel cells. J Mater Chem A 5(45):23872–23886

    Article  CAS  Google Scholar 

  16. Choi HJ, Jung SM, Seo JM et al (2012) Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 1(4):534–551

    Article  CAS  Google Scholar 

  17. Lyu H (2020) Triple layer tungsten trioxide, graphene, and polyaniline composite films for combined energy storage and electrochromic applications. Polymers 12(1):49

    Article  CAS  Google Scholar 

  18. Wang B, Ruan T, Chen Y et al (2020) Graphene-based composites for electrochemical energy storage. Energy Storage Mater 24:22–51

    Article  Google Scholar 

  19. Dutta D, Jiang JY, Jamaluddin A et al (2019) Nanocatalyst-assisted fine tailoring of pore structure in holey-graphene for enhanced performance in energy storage. ACS appl mater inters 11(40):36560–36570

    Article  CAS  Google Scholar 

  20. Qamar S, Akhtar MN, Aleem W et al (2020) Graphene anchored Ce doped spinel ferrites for practical and technological applications. Ceram Int 46(6):7081–7088

    Article  CAS  Google Scholar 

  21. Habib MM, Roy R, Islam MM et al (2019) Study of graphene-MoS2 based SPR biosensor with graphene based SPR biosensor: comparative approach. Int J Nat Sci Res 7(1):1–9

    Google Scholar 

  22. de Freitas ME, Amorim RG, Feliciano GT et al (2020) The role of water on the electronic transport in graphene nanogap devices designed for DNA sequencing. Carbon 158:314–319

    Article  Google Scholar 

  23. Wasfi A, Awwad F, Ayesh AI (2020) DNA sequencing via Z-shaped graphene nanoribbon field effect transistor decorated with nanoparticles using first-principle transport simulations. New J Phys 22(6):063004

    Article  CAS  Google Scholar 

  24. Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of the art. J Ind Eng Chem Res 48(10):4638–4663

    Article  CAS  Google Scholar 

  25. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  PubMed  Google Scholar 

  26. Oyama ST, Lee D, Hacarlioglu P et al (2004) Theory of hydrogen permeability in nanoporous silica membranes. J Membr Sci 244(1–2):244–245

    Google Scholar 

  27. Jiang DE, Cooper VR, Dai S (2009) Porous graphene as the ultimate membrane for gas separation. Nano Lett 9(12):4019–4024

    Article  CAS  PubMed  Google Scholar 

  28. Du H, Li J, Zhang J et al (2011) Separation of hydrogen and nitrogen gases with porous graphene membrane. J Phys Chem C 115(47):23261–23266

    Article  CAS  Google Scholar 

  29. Hauser AW, Schwerdtfeger P (2012) Methane-selective nanoporous graphene membranes for gas purification. Phys Chem Chem Phys 14(38):13292–13298

    Article  CAS  PubMed  Google Scholar 

  30. Hou Y, Li Y, Jiang C et al (2019) Molecular simulation for separation of ethylene and ethane by functionalised graphene membrane. Mol Simul 45(16):1322–1331

    Article  CAS  Google Scholar 

  31. Wu T, Xue Q, Ling C et al (2014) Fluorine-modified porous graphene as membrane for CO2/N2 separation: molecular dynamic and first-principles simulations. J Phys Chem C 118(14):7369–7376

    Article  CAS  Google Scholar 

  32. Lei G, Liu C, Xie H et al (2014) Separation of the hydrogen sulfide and methane mixture by the porous graphene membrane: effect of the charges. Chem Phys Lett 599:127–132

    Article  CAS  Google Scholar 

  33. Hauser AW, Mitrushchenkov AO, de Lara-Castells MP (2017) Quantum nuclear motion of helium and molecular nitrogen clusters in carbon nanotubes. J Phys Chem C 121(7):3807–3821

    Article  CAS  Google Scholar 

  34. Schrier J (2010) Helium separation using porous graphene membranes. J Phys Chem Lett 1(15):2284–2287

    Article  CAS  Google Scholar 

  35. Alnssar KN, Roknabadi MR, Behdani M et al (2020) Theoretical study of electronic properties of nanostructures composed of blue phosphorene and graphene sheet. In IOP conference series: Mater Sci Eng 871(1): p.012084. IOP Publishing

  36. Jadoon T, Carter-Fenk K, Siddique MB et al (2020) Silver clusters tune up electronic properties of graphene nanoflakes: a comprehensive theoretical study. J Mol Liq 297:111902

    Article  CAS  Google Scholar 

  37. Rossi-Fernández AC, Villegas-Escobar N, Guzmán-Angel D et al (2020) Theoretical study of glycine amino acid adsorption on graphene oxide. J Mol Model 26(2):33

    Article  PubMed  Google Scholar 

  38. Elgengehi SM, El-Taher S, Ibrahim MA et al (2020) Graphene and graphene oxide as adsorbents for cadmium and lead heavy metals: a theoretical investigation. Appl Surf Sci 507:145038

    Article  CAS  Google Scholar 

  39. Koçak İ, Alıcı H (2020) Experimental and theoretical studies of electrochemical oxidation of nicotinamide adenine dinucleotide at the modified SWCNT and graphene oxide. J Mol Model 26(3):51

    Article  PubMed  Google Scholar 

  40. Wei S, Zhou S, Wu Z, Wang M et al (2018) Mechanistic insights into porous graphene membranes for helium separation and hydrogen purification. Appl Surf Sci 441:631–638

    Article  CAS  Google Scholar 

  41. Burke K (2012) Perspective on density functional theory. J Chem Phys 136(15):150901

    Article  PubMed  Google Scholar 

  42. Ambrosetti A, Silvestrelli PL (2014) Gas separation in nanoporous graphene from first principle calculations. J Phys Chem C 118(33):19172–19179

    Article  CAS  Google Scholar 

  43. Lu R, Rao D, Lu Z et al (2012) Prominently improved hydrogen purification and dispersive metal binding for hydrogen storage by substitutional doping in porous graphene. J Phys Chem C 116(40):21291–21296

    Article  CAS  Google Scholar 

  44. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti Correlation-Energy Formula into a functional of the electron density. Phys Rev B 37(2):785–789

    Article  CAS  Google Scholar 

  45. Dunning Jr TH (1989) Gaussian basis sets for use in correlated molecular calculations. I The Atoms Boron Through Neon and Hydrogen J Chem Phys 90(2):1007–1023

    CAS  Google Scholar 

  46. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799

    Article  CAS  Google Scholar 

  47. Ehrlich S, Bollmann J, Reckien W, Bredow T, Grimme S (2011) System-dependent dispersion coefficients for the DFT-D3 treatment of adsorption processes on ionic surfaces. Chem Phys Chem 12(17):3414–3420

    Article  CAS  PubMed  Google Scholar 

  48. Leenaerts O, Partoens B, Peeters F (2009) Adsorption of small molecules on graphene. Microelectron J 40(4–5):860–862

    Article  CAS  Google Scholar 

  49. Ortiz YP, Jalbout AF (2013) Graphene metal adsorption as a model chemistry for atmospheric reactions. Chem Phys Lett 564:73–77

    Article  CAS  Google Scholar 

  50. Chen L, Xu C, Zhang XF et al (2009) Raman and infrared-active modes in MgO nanotubes. Physica E Low dimens Syst Nanostruct 41(5):852–855

    Article  CAS  Google Scholar 

  51. Beheshtian J, Kamfiroozi M, Bagheri Z et al (2012) Theoretical study of hydrogen adsorption on the B12P12 fullerene-like nanocluster. Comput Mater Sci 54:115–118

    Article  CAS  Google Scholar 

  52. Trani F, Causà M, Lettieri S et al (2009) Role of surface oxygen vacancies in photoluminescence of tin dioxide nanobelts. Maddalena, Microelectron J Comput Mater Sci 40(2):236–238

    CAS  Google Scholar 

  53. Dinadayalane TC, Murray JS, Concha MC et al (2010) Reactivities of sites on (5, 5) single-walled carbon nanotubes with and without a Stone-Wales defect. J Chem Theory Comput 6(4):1351–1357

    Article  CAS  Google Scholar 

  54. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, Rev A.7. Gaussian Inc, Pittsburgh PA

  55. Shahbabaei M, Tang D, Kim D (2017) Simulation insight into water transport mechanisms through multilayer graphene-based membrane. J Comput Mater Sci 128:87–97

    Article  CAS  Google Scholar 

  56. Shan M, Xue Q, Jing N et al (2012) Influence of chemical functionalization on the CO2/N2 separation performance of porous graphene membranes. Nanoscale 4(17):5477–5482

    Article  CAS  PubMed  Google Scholar 

  57. Hauser AW, Schrier J, Schwerdtfeger P (2012) Helium tunneling through nitrogen-functionalized graphene pores: pressure- and temperature-driven approaches to isotope separation. J Phys Chem C 116(19):10819–10827

    Article  CAS  Google Scholar 

  58. Hobza P, Zahradnik R (1988) Intermolecular interactions between medium-sized systems. Nonempirical and empirical calculations of interaction energies. Successes and failures J Chem Rev 88(6):871–897

    Article  CAS  Google Scholar 

  59. Navarrete M, Rangel C, Corchado JC et al (2005) Trapping of the OH radical by α-tocopherol: a theoretical study. J Phys Chem A 109(21):4777–4784

    Article  CAS  PubMed  Google Scholar 

  60. Zhang HY, Ji HF (2003) S-H proton dissociation enthalpies of thiophenolic cation radicals: a DFT study. J Mol Struct : THEOCHEM 663(1–3):167–174

    Article  CAS  Google Scholar 

  61. Chandra AK, Uchimaru T (2002) The OH bond dissociation energies of substituted phenols and proton affinities of substituted phenoxide ions: a DFT study. Int J Mol Sci 3(4):407–422

    Article  CAS  Google Scholar 

Download references

Code availability

The calculations have been carried out using the Chemistry Computation Center at Shahid Beheshti University by employing Gaussian 003 and Gauss View Version 6 provided by Gaussian, Inc.

Funding

This research was funded by the Research Council of Alzahra University (Grant No. 1431).

Author information

Authors and Affiliations

Authors

Contributions

Mina Ghiasi: Conceptualization, Methodology, Software, Writing- Reviewing and Editing, Supervision, Validation.

Parisa Zeinali: Data curation, Writing- Original draft, Software.

Samira Gholami: Data curation, Writing- Original draft, Software.

Mansour Zahedi: Software, Reviewing and Editing

Corresponding author

Correspondence to Mina Ghiasi.

Ethics declarations

Ethics approval

The manuscript is prepared in compliance with the Ethics in Publishing Policy as described in the Guide for Authors.

Consent to participate

The manuscript is approved by all authors for publication.

Consent for publication

The consent for publication was obtained from all participants.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghiasi, M., Zeinali, P., Gholami, S. et al. Separation of CH4, H2S, N2 and CO2 gases using four types of nanoporous graphene cluster model: a quantum chemical investigation. J Mol Model 27, 201 (2021). https://doi.org/10.1007/s00894-021-04812-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04812-2

Keywords

Navigation