Skip to main content

Advertisement

Log in

Effect of N7-methylation on base pairing patterns of guanine: a DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this paper, we aim to determine whether the N7-methylation can influence the base pairing properties of guanine by promoting the formation of guanine enol-tautomers. The keto- to -enol-tautomerization of N7-methylguanine (N7mG) and its base pairing patterns with all the canonical DNA bases have been investigated at the M06-2X/6-311+G(d,p) level of density functional theory. The barrier free energy calculations reveal that N7-methylation does not promote the keto- to enol- tautomerization of guanine. The Watson-Crick-like enol-N7mG:T1 or enol-N7mG:T2 base pair similar to what is observed experimentally is found to be energetically more stable than the keto-N7mG:T base pairs. However, the keto-N7mG:C1 which is structurally similar to the canonical G:C base pair is the most stable base pair among all the base pairs studied here. Thus, our calculations predict that N7mG would pair preferably with cytosine during DNA replication but there is also a probability that it can cause mutation through mispairing with thymine, in agreement with experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Das PM, Singal R (2004) DNA methylation and cancer. J Clin Oncol 22(22):4632–4642

    CAS  PubMed  Google Scholar 

  2. Giglia-Mari G, Zotter A, Vermeulen W (2011) DNA damage response. Cold Spring Harb Perspect Biol 3(1):a000745

    PubMed  PubMed Central  Google Scholar 

  3. Brown R, Plumb JA (2004) Demethylation of DNA by decitabine in cancer chemotherapy. Expert Rev Anticancer Ther 4(4):501–510

    CAS  PubMed  Google Scholar 

  4. David SS, O'Shea VL, Kundu S (2007) Base-excision repair of oxidative DNA damage. Nature 447(7147):941–950

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429(6990):457–463. https://doi.org/10.1038/nature02625

    Article  CAS  PubMed  Google Scholar 

  6. Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7(1):21–33. https://doi.org/10.1038/nrg1748

    Article  CAS  PubMed  Google Scholar 

  7. Helleday T, Lo J, van Gent DC, Engelward BP (2007) DNA double-strand break repair: from mechanistic understanding to cancer treatment. DNA Repair (Amst) 6(7):923–935

    CAS  Google Scholar 

  8. Hoeijmakers JH (2009) DNA damage, aging, and cancer. N Engl J Med 361(15):1475–1485

    CAS  PubMed  Google Scholar 

  9. Hussain SP, Hofseth LJ, Harris CC (2003) Radical causes of cancer. Nat Rev Cancer 3(4):276–285

    CAS  PubMed  Google Scholar 

  10. Jena N (2012) DNA damage by reactive species: mechanisms, mutation and repair. J Biosci 37(3):503–517

    CAS  PubMed  Google Scholar 

  11. Klaunig JE, Kamendulis LM (2004) The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 44:239–267

    CAS  PubMed  Google Scholar 

  12. Olinski R, Gackowski D, Foksinski M, Rozalski R, Roszkowski K, Jaruga P (2002) Oxidative DNA damage: assessment of the role in carcinogenesis, atherosclerosis, and acquired immunodeficiency syndrome. Free Radic Biol Med 33(2):192–200

    CAS  PubMed  Google Scholar 

  13. Weidman JR, Dolinoy DC, Murphy SK, Jirtle RL (2007) Cancer susceptibility: epigenetic manifestation of environmental exposures. Cancer J 13(1):9–16

    CAS  PubMed  Google Scholar 

  14. Kulis M, Esteller M (2010) DNA methylation and cancer. Advances in genetics. Elsevier, pp 27–56

  15. Shukla P, Jena N, Mishra P (2011) Quantum theoretical study of molecular mechanisms of mutation and cancer-a review. Proc Natl Acad Sci India Sect A Phys Sci 81(part 2):79–98

    Google Scholar 

  16. Gates KS (2009) An overview of chemical processes that damage cellular DNA: spontaneous hydrolysis, alkylation, and reactions with radicals. Chem Res Toxicol 22(11):1747–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Halliwell B (1999) Oxygen and nitrogen are pro-carcinogens. Damage to DNA by reactive oxygen, chlorine and nitrogen species: measurement, mechanism and the effects of nutrition. Mutat Res 443(1–2):37–52

    CAS  PubMed  Google Scholar 

  18. Lawley P, Brookes P (1963) Further studies on the alkylation of nucleic acids and their constituent nucleotides. Biochem J 89(1):127

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lawley P (1966) Effects of some chemical mutagens and carcinogens on nucleic acids. Prog Nucleic Acid Res Mol Biol 5:89–131

    CAS  PubMed  Google Scholar 

  20. Lawley P (1989) Mutagens as carcinogens: development of current concepts. Mutat Res 213(1):3–25

    CAS  PubMed  Google Scholar 

  21. Mishina Y, Duguid EM, He C (2006) Direct reversal of DNA alkylation damage. Chem Rev 106(2):215–232

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Neeley WL, Essigmann JM (2006) Mechanisms of formation, genotoxicity, and mutation of guanine oxidation products. Chem Res Toxicol 19(4):491–505

    CAS  PubMed  Google Scholar 

  23. Niles JC, Wishnok JS, Tannenbaum SR (2006) Peroxynitrite-induced oxidation and nitration products of guanine and 8-oxoguanine: structures and mechanisms of product formation. Nitric Oxide 14(2):109–121

    CAS  PubMed  Google Scholar 

  24. Wyatt MD, Pittman DL (2006) Methylating agents and DNA repair responses: methylated bases and sources of strand breaks. Chem Res Toxicol 19(12):1580–1594

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sonntag C (2006) Free-radical-induced DNA damage and its repair: a chemical perspective. Springer, Berlin, Heidelberg

  26. Chen D, Meng L, Pei F, Zheng Y, Leng J (2017) A review of DNA methylation in depression. J Clin Neurosci 43:39–46

    CAS  PubMed  Google Scholar 

  27. Fu D, Calvo JA, Samson LD (2012) Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat Rev Cancer 12(2):104

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Meikrantz W, Bergom MA, Memisoglu A, Samson L (1998) O6-alkylguanine DNA lesions trigger apoptosis. Carcinogenesis 19(2):369–372

    CAS  PubMed  Google Scholar 

  29. Robison SH, Munzer JS, Mrcp RT, Bradley WG (1987) Alzheimer's disease cells exhibit defective repair of alkylating agent—induced DNA damage. Ann Neurol 21(3):250–258

    CAS  PubMed  Google Scholar 

  30. Friedberg EC, Walker GC, Siede W, Wood RD (2005) DNA repair and mutagenesis. American Society for Microbiology Press, Washington, DC

  31. Gates KS, Nooner T, Dutta S (2004) Biologically relevant chemical reactions of N7-alkylguanine residues in DNA. Chem Res Toxicol 17(7):839–856

    CAS  PubMed  Google Scholar 

  32. Singer B (1975) The chemical effects ofNucleic acid alkylation and their relation to mutagenesis and carcinogen esis. Prog Nucleic Acid Res Mol Biol 15:219–284

    CAS  PubMed  Google Scholar 

  33. Singer B, Grunberger D (2012) Molecular biology of mutagens and carcinogens. Plenum Press, New York

  34. de Vries M, van der Plaat DA, Nedeljkovic I, Verkaik-Schakel RN, Kooistra W, Amin N, van Duijn CM, Brandsma C-A, van Diemen CC, Vonk JM (2018) From blood to lung tissue: effect of cigarette smoke on DNA methylation and lung function. Respir Res 19(1):1–9

    Google Scholar 

  35. Reynolds LM, Wan M, Ding J, Taylor JR, Lohman K, Su D, Bennett BD, Porter DK, Gimple R, Pittman GS (2015) DNA methylation of the aryl hydrocarbon receptor repressor associations with cigarette smoking and subclinical atherosclerosis. Circ Cardiovasc Genet 8(5):707–716

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Drabløs F, Feyzi E, Aas PA, Vaagbø CB, Kavli B, Bratlie MS, Peña-Diaz J, Otterlei M, Slupphaug G, Krokan HE (2004) Alkylation damage in DNA and RNA—repair mechanisms and medical significance. DNA Repair 3(11):1389–1407

    PubMed  Google Scholar 

  37. Cai J, Zhao Y, Liu P, Xia B, Zhu Q, Wang X, Song Q, Kan H, Zhang Y (2017) Exposure to particulate air pollution during early pregnancy is associated with placental DNA methylation. Sci Total Environ 607:1103–1108

    PubMed  Google Scholar 

  38. Joubert BR, Håberg SE, Nilsen RM, Wang X, Vollset SE, Murphy SK, Huang Z, Hoyo C, Midttun Ø, Cupul-Uicab LA (2012) 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect 120(10):1425–1431

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zeilinger S, Kühnel B, Klopp N, Baurecht H, Kleinschmidt A, Gieger C, Weidinger S, Lattka E, Adamski J, Peters A (2013) Tobacco smoking leads to extensive genome-wide changes in DNA methylation. PLoS One 8(5):e63812

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Waddell JA, Solimando Jr DA (2006) Carmustine, cisplatin, dacarbazine, and tamoxifen (Dartmouth regimen) for metastatic melanoma. Hosp Pharm 41(2):124–132

    Google Scholar 

  41. Cocconi G, Bella M, Calabresi F, Tonato M, Canaletti R, Boni C, Buzzi F, Ceci G, Corgna E, Costa P (1992) Treatment of metastatic malignant melanoma with dacarbazine plus tamoxifen. N Engl J Med 327(8):516–523

    CAS  PubMed  Google Scholar 

  42. O'day SJ, Kim CJ, Reintgen DS (2002) Metastatic melanoma: chemotherapy to biochemotherapy. Cancer Control 9(1):31–38

    PubMed  Google Scholar 

  43. Eggermont AM, Kirkwood JM (2004) Re-evaluating the role of dacarbazine in metastatic melanoma: what have we learned in 30 years? Eur J Cancer 40(12):1825–1836

    CAS  PubMed  Google Scholar 

  44. Douglas JG, Margolin K (2002) The treatment of brain metastases from malignant melanoma. Seminars in oncology. Elsevier, pp 518–524

  45. Zhang J, Stevens MFG, Bradshaw TD (2012) Temozolomide: mechanisms of action, repair and resistance. Curr Mol Pharmacol 5(1):102–114

    CAS  PubMed  Google Scholar 

  46. Boysen G, Pachkowski BF, Nakamura J, Swenberg JA (2009) The formation and biological significance of N7-guanine adducts. Mutat Res 678(2):76–94

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ekanayake KS, LeBreton PR (2006) Activation barriers for DNA alkylation by carcinogenic methane diazonium ions. J Comput Chem 27(3):277–286

    CAS  PubMed  Google Scholar 

  48. Sedgwick B (2004) Repairing DNA-methylation damage. Nat Rev Mol Cell Biol 5(2):148–157

    CAS  PubMed  Google Scholar 

  49. Sedgwick B, Bates PA, Paik J, Jacobs SC, Lindahl T (2007) Repair of alkylated DNA: recent advances. DNA Repair 6(4):429–442

    CAS  PubMed  Google Scholar 

  50. Boiteux S, Guillet M (2004) Abasic sites in DNA: repair and biological consequences in Saccharomyces cerevisiae. DNA Repair 3(1):1–12

    CAS  PubMed  Google Scholar 

  51. Dutta S, Chowdhury G, Gates KS (2007) Interstrand cross-links generated by abasic sites in duplex DNA. J Am Chem Soc 129(7):1852–1853

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Greenberg MM (2014) Abasic and oxidized abasic site reactivity in DNA: enzyme inhibition, cross-linking, and nucleosome catalyzed reactions. Acc Chem Res 47(2):646–655

    CAS  PubMed  Google Scholar 

  53. Lhomme J, Constant JF, Demeunynck M (1999) Abasic DNA structure, reactivity, and recognition. Biopolymers 52(2):65–83

    CAS  PubMed  Google Scholar 

  54. Loeb LA, Preston BD (1986) Mutagenesis by apurinic/apyrimidinic sites. Annu Rev Genet 20(1):201–230

    CAS  PubMed  Google Scholar 

  55. Wilson III DM, Barsky D (2001) The major human abasic endonuclease: formation, consequences and repair of abasic lesions in DNA. Mutat Res 485(4):283–307

    CAS  PubMed  Google Scholar 

  56. Citti L, Gervasi P, Turchi G, Ga B, Bianchini R (1984) The reaction of 3, 4-epoxy-1-butene with deoxyguanosine and DNA in vitro: synthesis and characterization of the main adducts. Carcinogenesis 5(1):47–52

    CAS  PubMed  Google Scholar 

  57. King H, Osborne M, Brookes P (1979) The in vitro and in vivo reaction at the N7-position of guanine of the ultimate carcinogen derived from benzo [a] pyrene. Chem Biol Interact 24(3):345–353

    CAS  PubMed  Google Scholar 

  58. Pujari SS, Tretyakova N (2017) Chemical biology of N5-substituted formamidopyrimidine DNA adducts. Chem Res Toxicol 30(1):434–452

    CAS  PubMed  Google Scholar 

  59. Price NE, Johnson KM, Wang J, Fekry MI, Wang Y, Gates KS (2014) Interstrand DNA–DNA cross-link formation between adenine residues and abasic sites in duplex DNA. J Am Chem Soc 136(9):3483–3490

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Tudek B (2003) Imidazole ring-opened DNA purines and their biological significance. J Biochem Mol Biol 36(1):12–19

    CAS  PubMed  Google Scholar 

  61. Wiederholt CJ, Greenberg MM (2002) Fapy⊙ dG instructs Klenow exo-to misincorporate deoxyadenosine. J Am Chem Soc 124(25):7278–7279

    CAS  PubMed  Google Scholar 

  62. Yang K, Park D, Tretyakova NY, Greenberg MM (2018) Histone tails decrease N7-methyl-2′-deoxyguanosine depurination and yield DNA–protein cross-links in nucleosome core particles and cells. Proc Natl Acad Sci 115(48):E11212–E11220

    CAS  PubMed  Google Scholar 

  63. Kou Y, Koag M-C, Lee S (2015) N7 methylation alters hydrogen-bonding patterns of guanine in duplex DNA. J Am Chem Soc 137(44):14067–14070

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Barone G, Fonseca Guerra C, Bickelhaupt FM (2013) B-DNA structure and stability as function of nucleic acid composition: dispersion-corrected DFT study of dinucleoside monophosphate single and double strands. ChemistryOpen 2(5–6):186–193

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Šponer J, Jurecka P, Hobza P (2004) Accurate interaction energies of hydrogen-bonded nucleic acid base pairs. J Am Chem Soc 126(32):10142–10151

    PubMed  Google Scholar 

  66. Fonseca Guerra C, Bickelhaupt FM (1999) Charge transfer and environment effects responsible for characteristics of DNA base pairing. Angew Chem Int Ed 38(19):2942–2945

    CAS  Google Scholar 

  67. Shukla PK, Mishra P (2013) Base pairing patterns of DNA base lesion spiroiminodihydantoin: a DFT study. Int J Quantum Chem 113(24):2600–2604

    CAS  Google Scholar 

  68. Felske LR, Lenz SA, Wetmore SD (2018) Quantum chemical studies of the structure and stability of N-methylated DNA nucleobase dimers: insights into the mutagenic base pairing of damaged DNA. J Phys Chem A 122(1):410–419

    CAS  PubMed  Google Scholar 

  69. Flood A, Hubbard C, Forde G, Hill G, Gorb L, Leszczynski J (2003) Theoretical ab initio study of the effects of methylation on the nature of hydrogen bonding in A:T base pair. J Biomol Struct Dyn 21(2):297–302

    CAS  PubMed  Google Scholar 

  70. Forde G, Flood A, Salter L, Hill G, Gorb L, Leszczynski J (2003) Theoretical ab initio study of the effects of methylation on structure and stability of G: C Watson-Crick base pair. J Biomol Struct Dyn 20(6):811–817

    CAS  PubMed  Google Scholar 

  71. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120(1–3):215–241

    CAS  Google Scholar 

  72. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA (2009) Gaussian 09 C. 01. Gaussian Inc, Wallingford CT

  73. Mennucci B, Tomasi J (1997) Continuum solvation models: a new approach to the problem of solute’s charge distribution and cavity boundaries. J Chem Phys 106(12):5151–5158

    CAS  Google Scholar 

  74. Dennington R, Keith T, Millam J (2009) GaussView, version 5

  75. Forde GK, Forde AE, Hill G, Ford A, Nazario A, Leszczynski J (2006) Comprehensive study of the effects of methylation on tautomeric equilibria of nucleic acid bases. J Phys Chem B 110(31):15564–15571

    CAS  PubMed  Google Scholar 

  76. Yanson I, Teplitsky A, Sukhodub L (1979) Experimental studies of molecular interactions between nitrogen bases of nucleic acids. Biopolymers 18(5):1149–1170

    CAS  PubMed  Google Scholar 

  77. Rejnek J, Hobza P (2007) Hydrogen-bonded nucleic acid base pairs containing unusual base tautomers: complete basis set calculations at the MP2 and CCSD (T) levels. J Phys Chem B 111(3):641–645

    CAS  PubMed  Google Scholar 

  78. Koag M-C, Kou Y, Ouzon-Shubeita H, Lee S (2014) Transition-state destabilization reveals how human DNA polymerase β proceeds across the chemically unstable lesion N7-methylguanine. Nucleic Acids Res 42(13):8755–8766

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the general computational facility of the Department of Physics, Assam University, Silchar.

Author information

Authors and Affiliations

Authors

Contributions

SB performed simulation, data collection and partial contribution to the first draft of the manuscript. PKS planned and supervised the research work, analysis of the results and writing of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Pradeep Kumar Shukla.

Ethics declarations

Ethical approval

This article does not contain any studies involving animals performed by any of the authors.

Consent to participate

This article does not contain any studies involving animals performed by any of the authors.

Consent for publication

All the authors mentioned in the manuscript have given consent for submission and subsequent publication of the manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 162 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S., Shukla, P.K. Effect of N7-methylation on base pairing patterns of guanine: a DFT study. J Mol Model 27, 184 (2021). https://doi.org/10.1007/s00894-021-04792-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04792-3

Keywords

Navigation