Skip to main content
Log in

DFT calculation of hydrothermal mechanism on preparation of MoS2

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Basing on the simplest hydrothermal system containing deionized water, hexa-ammonium molybdate, and thiourea, hydrothermal mechanism on preparation of MoS2 was studied by DFT calculation. Hydrothermal process was divided into four steps which covered ionization equilibrium, the hydrolysis of CS(NH2)2, the formation of intermediates, and the formation of MoS2. Ionization equilibrium occurs at normal condition and determines the existence of Mo in the form of molybdic acid. Thiourea hydrolysis is rate-determining step in the process of hydrothermal which contains 10 elementary reactions. The formation of intermediates includes hydrogen transfer, dehydration, and vulcanization three steps which contain 18 elementary reactions, and the energy barrier of vulcanization is the highest. The formation of MoS2 is divided into two steps, the first step is that MoO(OH)(SH)3.H2O reacts with MoO (SH)4.H2O to form layer MoS2, and the second step is a very fast process that can affect the morphology of the products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yun SJ, Lee YH (2017) van der Waals layered materials: opportunities and challenges. ACS Nano 11(12):11803–11830

    Article  CAS  Google Scholar 

  2. Ding J, Zhou Y, Li Y, Guo S, Huang X (2016) MoS2 nanosheet assembling superstructure with a three-dimensional ion accessible site: a new class of bifunctional materials for batteries and electrocatalysis. Chem Mater 28:2074–2080

    Article  CAS  Google Scholar 

  3. Fang X, Guo X, Mao Y, Hua C, Shen L, Hu Y, Wang Z, Wu F, Chen L (2012) Mechanism of lithium storage in MoS2 and the feasibility of using Li2S/Mo nanocomposites as cathode materials for lithium–sulfur batteries. Chem-Asian J 7:1013–1017

    Article  CAS  Google Scholar 

  4. Soon JM, Loh KP (2007) Electrochemical double-layer capacitance of MoS2 nanowall films. Electrochem Solid-State Lett 10:A250–A254

    Article  CAS  Google Scholar 

  5. Kim YH, Kim KY, Choi YR, Shim YS, Jeon JM, Lee JH, Kim SY, Han S, Jang HW (2016) Ultrasensitive reversible oxygen sensing in liquid-exfoliated MoS2 nanoparticles. J Mater Chem A 4:6070–6076

    Article  CAS  Google Scholar 

  6. Xie J, Zhang J, Li S, Grote F et al (2014). J Am Chem Soc 136(4):7881–17888

    Google Scholar 

  7. Tian Y, Xu Z, Shen L, Meng F et al (2006). Mater Lett 60(4):527–529

    Article  CAS  Google Scholar 

  8. Zhang H, Lin H, Zheng Y et al (2015). Appl Catal B Environ 165:537–546

    Article  CAS  Google Scholar 

  9. Lamic AF, Daudin A, Brunet S, Legens C et al (2015). Chem Commun 51(19):4048–4050

    Article  CAS  Google Scholar 

  10. Peng Z, Gao C, Benhua X et al (2016). Small 12(15):2077–2084

    Article  CAS  Google Scholar 

  11. Erickson BE, Helz GR (2000). Geochim Cosmochim Acta 64:1149–1158

    Article  CAS  Google Scholar 

  12. Park S-K, Yu S-H, Woo S, Ha J, Shin J, Sung Y-E, Piao Y (2012). CrystEngComm 14:8323–8325

    Article  CAS  Google Scholar 

  13. Dunne PW, Munn AS, Starkey CL, Lester EH (2015). Chem Commun 51:4048–4050

    Article  CAS  Google Scholar 

  14. Wang W, Lu L, Wu K, Zhu G, Tan S, Li W, Yang Y (2015) Hydrothermal synthesis of bimodal mesoporous MoS2 nanosheets and their hydrodeoxygenation properties. RSC Adv 5:61799–61807

    Article  CAS  Google Scholar 

  15. Ma G, Peng H, Jingjing M, Huang H, Zhou X, Lei Z (2013) In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor. J Power Sources 229:72–78

    Article  CAS  Google Scholar 

  16. Kun C, Weixiang C (2011) L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5:4720–4728

    Article  CAS  Google Scholar 

  17. TianYumei ZX, Lianchun S, Fanyu M, Lanqin T, Yanhui D, Zichen W (2006) Synthesis of amorphous MoS2 nanospheres by hydrothermal reaction. Mater Lett 60:527–529

    Article  CAS  Google Scholar 

  18. Al-Mamun M, Haimin Z, Porun L, Yun W, Jun C, Huijun Z (2014) Directly hydrothermal growth of ultrathin MoS2 nanostructured films as high performance counter electrodes for dye-sensitised solar cells. RSC Adv 4:21277

    Article  CAS  Google Scholar 

  19. Akbarian D, Yilmaz DE, Cao Y et al (2019) Understanding the influence of defects and surface chemistry on ferroelectric switching: a ReaxFF investigation of BaTiO3. Phys Chem Chem Phys 21:18240–18249

    Article  CAS  Google Scholar 

  20. Ostadhossein A, Rahnamoun A, Wang Y et al (2017) ReaxFF reactive force-field study of molybdenum disulfide (MoS2). J Phys Chem Lett 8(3):631–640

    Article  CAS  Google Scholar 

  21. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  CAS  Google Scholar 

  22. Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chem Accounts 44(2):129–138

    Article  CAS  Google Scholar 

  23. Gustafsson JPA (2006) VISUAL MINTEQ. Royal Institute of Technology in Stockholm, Stockholm

    Google Scholar 

  24. Spanos N, Alexis L (1994) Molybdenum-oxo species deposited on alumina by adsorption. III. Advances in the mechanism of Mo (VI) deposition. J Catal 147:57–71

    Article  CAS  Google Scholar 

  25. Cruywagen JJ, Rohwer EFCH (1975) Coordination number of molybdenum (VI) in monomeric molybdic acid. Inorg Chem 14(12):3136–3137

    Article  CAS  Google Scholar 

  26. Oyerinde OF, Weeks CL, Anbar AD, Spiro T (2008) Solution structure of molybdic acid from Raman spectroscopy and DFT analysis. Inorg Chim Acta 361(4):1000–1007

    Article  CAS  Google Scholar 

  27. Goumri A, Rocha J-DR, Laakso D et al (1994) Computational studies of the potential energy surface for O(1D) + H2S: characterization of pathways involving H2SO, HOSH, and H2OS. J Chem Phys 101:9405–9411

    Article  CAS  Google Scholar 

  28. Park SK, Yu SH, Woo S, Ha J et al (2012) A facile and green strategy for the synthesis of MoS2 nanospheres with excellent Li-ion storage properties. CrystEngComm 14(24):8323–8325

    Article  CAS  Google Scholar 

  29. Zhang C, PingLi XL, Liu T, Jiang Z, Li C (2018) Morphology performance relation of (Co)MoS2 catalysts in the hydrodesulfurization of FCC gasoline. Appl Catal A Gen 556:20–28

    Article  CAS  Google Scholar 

  30. Lamic AF, Daudin A, Brunet S, Legens C, Bouchy C, Devers E (2015). Chem Commun 51(19):4048–4050

    Article  CAS  Google Scholar 

  31. Zhang C, PingLi XL, Liu T, Jiang Z, Li C (2018). Appl Catal A Gen 556

  32. Erickson BE, Helz GR (2000). Geochim Cosmochim Acta 64(7):1149–1158

    Article  CAS  Google Scholar 

  33. Wang Z, Wu H-H, Li Q, Besenbacher F, Zeng XC, Dong M (2018) Self-scrolling MoS2 metallic wires. Nanoscale 10:18178–18185

    Article  CAS  Google Scholar 

  34. Hansen CM (2007) Hansen solubility parameters: a user’s handbook. CRC, Boca Raton

    Book  Google Scholar 

  35. Li M, Wang D, Li J, Pan Z, Ma H et al (2017) Surfactant-assisted hydrothermally synthesized MoS2 samples with controllable morphologies and structures for anthracene hydrogenation. Chin J Catal 38(3):597–606

    Article  CAS  Google Scholar 

  36. He H, Liu N, Wei J et al (2020) Two-step hydrothermal preparation of poor crystalline MoS2 and its enhanced performance for dibenzothiophene hydrodesulfurization. Nano Lett. https://digital-ibrary.theiet.org/content/journals/10.1049/mnl.2020.0234

  37. Devers E, Afanasiev P, Jouguet B, Vrinat M (2002) Hydrothermal syntheses and catalytic properties of dispersed molybdenum sulfides. Catal Lett 82(1–2):13–17

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueli Huang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3282 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Liu, N., Wang, X. et al. DFT calculation of hydrothermal mechanism on preparation of MoS2. J Mol Model 26, 257 (2020). https://doi.org/10.1007/s00894-020-04521-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04521-2

Keywords

Navigation