Skip to main content
Log in

Computational insight into the contribution of para-substituents on the reduction potential, proton affinity, and electronic properties of nitrobenzene compounds

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

New insight is provided into the chemistry of 12 para-substituted nitrobenzene compounds, using the high-level computational method G3(MP2) and DFT methods. The results show that the chemical properties of the nitrobenzene molecules, such as reduction potential, ionization energy, proton affinity, pKa, interaction energy of the fragments, hyperpolarizability, exaltation index, band gap, UV electron excitation, and QTAIM properties, are controlled by the strong coupling between the nitro group (NO2) and the nature of the various para-substituents via the benzene ring as their conducting link. As the electron donating tendency of the para-substituent increases in the molecules, the electron cloud around the nitro group also increases, resulting in contraction of the N–C bonds and elongation of the N=O bonds, consequently leading to gradually increasing electron conductivity, polarizability, and ionization energy but lower proton affinity, thereby progressively impeding the reduction potential of the molecules. The experimental reduction potential was reproduced to a high degree of accuracy, with a mean absolute deviation (MAD) of 0.048 V, depending on the computational method used and the choice of the free energy circle. Additionally, the experimental electron affinity and proton affinity of the 12 molecules were reproduced to a high degree of accuracy.

The correlation of experimental and computational reduction potential of twelve nitrobenzen compounds

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Smith WH, Bard AJ (1975) Electrochemical reactions of organic compounds in liquid ammonia. II. Nitrobenzene and nitrosobenzene. J Am Chem Soc 97:5203–5210. https://doi.org/10.1021/ja00851a030

    Article  CAS  Google Scholar 

  2. Edwards DI (1986) Reduction of nitroimidazoles in vitro and DNA damage. Biochem Pharmacol 35:53–58. https://doi.org/10.1016/0006-2952(86)90554-X

    Article  CAS  PubMed  Google Scholar 

  3. Kuhn A, Von Eschwege KG, Conradie J (2012) Reduction potentials of para - substituted nitrobenzenes—an infrared, nuclear magnetic resonance, and density functional theory study. J Phys Org Chem 25:58–68. https://doi.org/10.1002/poc.1868

    Article  CAS  Google Scholar 

  4. Chowdhury S, Kebarl P (1986) Electron affinities of Di- and Tetracyanoethylene and Cyanobenzenes based on measurements of gas-phase Electron-transfer Equilibria. J Am Chem Soc 108:5453–5459. https://doi.org/10.1021/ja00278a014

    Article  CAS  Google Scholar 

  5. Chowdhury S, Heinis T, Kebarle P (1986) Radical anions. Electron affinities of benzene, naphthalene,and anthracene having formyl, cyano, and nitro substituents. J Am Chem Soc 108:4662–4663. https://doi.org/10.1021/ja00275a074

    Article  CAS  Google Scholar 

  6. Huh C, Kang CH, Lee HW et al (1999) Thermodynamic stabilities and resonance demand of aromatic radical anions in the gas phase. Bull Chem Soc Jpn 72:1083–1091. https://doi.org/10.1246/bcsj.72.1083

    Article  CAS  Google Scholar 

  7. Muckerman JT, Skone JH, Ning M, Wasada-tsutsui Y (2013) Toward the accurate calculation of pKa values in water and acetonitrile ☆. Biochim Biophys Acta 1827:882–891. https://doi.org/10.1016/j.bbabio.2013.03.011

    Article  CAS  PubMed  Google Scholar 

  8. Li X, Fu Y (2008) Theoretical study of reduction potentials of substituted flavins. J Mol Struct 856:112–118. https://doi.org/10.1016/j.theochem.2008.01.029

    Article  CAS  Google Scholar 

  9. Pakiari AH, Siahrostami S, Mohajeri A (2008) Application of density functional theory for evaluation of standard two-electron reduction potentials in some quinone derivatives. J Mol Struct THEOCHEM 870:10–14. https://doi.org/10.1016/j.theochem.2008.08.030

    Article  CAS  Google Scholar 

  10. Marenich AV, Ho J, Coote ML et al (2014) Computational electrochemistry: prediction of liquid-phase reduction potentials. Phys Chem Chem Phys 16:15068–15106. https://doi.org/10.1039/c4cp01572j

    Article  CAS  PubMed  Google Scholar 

  11. Jono R, Yamashita K (2015) A method to calculate redox potentials relative to the normal hydrogen electrode in nonaqueous solution by using density functional theory-based. Phys Chem Chem Phys 17:27103–27108. https://doi.org/10.1039/C5CP05029D

    Article  CAS  PubMed  Google Scholar 

  12. Liptak MD, Shields GC (2001) Accurate p K a calculations for carboxylic acids using complete basis set and Gaussian-n models combined with CPCM continuum Solvation methods. J Am Chem Soc 123:7314–7319. https://doi.org/10.1021/ja010534f

    Article  CAS  PubMed  Google Scholar 

  13. Perez-Gonzalez A, Galano A (2011) Ionization energies, proton affinities, and p K a values of a large series of Edaravone derivatives: implication for their free radical scavenging activity. J Phys Chem B 115:10375–10384. https://doi.org/10.1021/jp2047163

    Article  CAS  PubMed  Google Scholar 

  14. Namazian M, Lin CY, Coote ML (2010) Benchmark calculations of absolute reduction potential of Ferricinium / Ferrocene couple in nonaqueous solutions. J Chem Theory Comput 6:2721–2725. https://doi.org/10.1021/ct1003252

    Article  CAS  PubMed  Google Scholar 

  15. Henry DJ, Sullivan MB, Radom L et al (2003) G3-RAD and G3X-RAD: modified Gaussian-3 ( G3 ) and Gaussian-3X ( G3X ) procedures for radical thermochemistry G3-RAD and G3X-RAD : modified Gaussian-3 “G3 … and Gaussian-3X” G3X … procedures for radical thermochemistry. J Chem Phys 118:4849–4860. https://doi.org/10.1063/1.1544731

    Article  CAS  Google Scholar 

  16. Henry DJ, Sullivan MB, Radom L et al (2007) G3-RAD and G3X-RAD : modified Gaussian-3 “G3 … and Gaussian-3X” G3X … procedures for radical thermochemistry. J Chem Phys 3:4849–4860. https://doi.org/10.1063/1.1544731

    Article  CAS  Google Scholar 

  17. Fu Y, Liu L, Yu H et al (2005) Quantum-chemical predictions of absolute standard Redox potentials of diverse organic molecules and free radicals in Acetonitrile. J Am Chem Soc 127:7227–7234. https://doi.org/10.1021/ja0421856

    Article  CAS  PubMed  Google Scholar 

  18. Zhan C, Dixon DA (2001) Absolute hydration free energy of the proton from first-principles electronic structure calculations. J Phys Chem A 105:11534–11540

    Article  CAS  Google Scholar 

  19. Camaioni DM, Schwerdtfeger CA (2005) Of H+, OH-, and H3O+. J Phys Chem A 109:10795–10797. https://doi.org/10.1021/jp054088k

    Article  CAS  PubMed  Google Scholar 

  20. Kelly CP, Cramer CJ, Truhlar DG (2007) Single-ion Solvation free energies and the normal hydrogen electrode potential in methanol, acetonitrile, and dimethyl sulfoxide. J Phys Chem B 111:408–422. https://doi.org/10.1021/jp065403l

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hunter EPL, Lias SG, Hunter EPL, Lias SG (1998) Evaluated gas phase Basicities and proton affinities of molecules: an update evaluated gas phase Basicities and proton affinities of molecules: an update. J Phys Chem Ref Data 27:413–656

    Article  CAS  Google Scholar 

  22. Fifen JJ, Dhaouadi Z, Nsangou M (2014) Revision of the thermodynamics of the proton in gas phase. J Phys Chem A 118:11090–11097. https://doi.org/10.1021/jp508968z

    Article  CAS  PubMed  Google Scholar 

  23. Alparone A (2012) Dipole (hyper)polarizabilities of fluorinated benzenes: an ab initio investigation. J Fluor Chem 144:94–101. https://doi.org/10.1016/j.jfluchem.2012.07.016

    Article  CAS  Google Scholar 

  24. de Silva IC, de Silva RM, Nalin de Silva KM (2005) Investigations of nonlinear optical (NLO) properties of Fe, Ru and Os organometallic complexes using high accuracy density functional theory (DFT) calculations. J Mol Struct THEOCHEM 728:141–145. https://doi.org/10.1016/j.theochem.2005.02.092

    Article  CAS  Google Scholar 

  25. Mendes PJ, Ramalho JPP, Candeias AJE et al (2005) Density functional theory calculations on eta(5)-monocyclopentadienylnitrilecobalt complexes concerning their second-order nonlinear optical properties. J Mol Struct 729:109–113. https://doi.org/10.1016/j.theochem.2004.12.048

    Article  CAS  Google Scholar 

  26. Liu Y, Liu C-G, Sun S-L et al (2012) Redox-switching second-order nonlinear optical responses of N^N^N ruthenium complexes. Comput Theor Chem 979:112–118. https://doi.org/10.1016/j.comptc.2011.10.025

    Article  CAS  Google Scholar 

  27. The CTCP table of experimental and calculated static dipole polarizabilities for the electronic ground states of the neutral elements. In: Cent. Theor. Chem. Physics, New Zeal. Inst. Adv. Study, Massey Univ. (Albany Campus), New Zeal. http://ctcp.massey.ac.nz/index.php?menu=dipole&page=dipole. Accessed 24 Oct 2018

  28. Kazuo K, Keiji M (2004) A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation. Int J Quantum Chem 10:325–340. https://doi.org/10.1002/qua.560100211

    Article  Google Scholar 

  29. Glendening ED, Streitwieser A (1994) Natural energy decomposition analysis: an energy partitioning procedure for molecular interactions with application to weak hydrogen bonding, strong ionic, and moderate donor – acceptor interactions. Natural energy decomposition analysis: an energy par. J Chem Phys 100:2900–2909. https://doi.org/10.1063/1.466432

    Article  CAS  Google Scholar 

  30. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. A new local density functional for main-group thermochemistry , transition metal bonding , thermochemical kin. J Chem Phys 125:194101. https://doi.org/10.1063/1.2370993

    Article  CAS  PubMed  Google Scholar 

  31. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal Solvation model based on solute Electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  32. Skyner RE, Mcdonagh JL, Groom CR, Van Mourik T (2015) A review of methods for the calculation of solution free energies and the modelling of systems in solution. Phys Chem Chem Phys 17:6174–6191. https://doi.org/10.1039/C5CP00288E

    Article  CAS  PubMed  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09

  34. Glendening ED, Badenhoop JK, Reed AE et al (2013) NBO 6.0

  35. Helms V, Winstead C, Langhoff P (2000) Low-lying electronic excitations of the green fluorescent protein chromophore. J Mol Struct THEOCHEM 506:179–189. https://doi.org/10.1016/S0166-1280(00)00411-5

    Article  CAS  Google Scholar 

  36. Schmidt MW, Baldridge KK, Boatz JA et al (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  37. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:27-28-38

    Article  Google Scholar 

  38. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF chimera--a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  39. Keith TA (2017) AIMAll

  40. (2018) The R Core Team: a language and enviroment fo statistical computing

  41. Linstrom PJ, Mallard WG, Eds. NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg

  42. Mock RS, Grimsrud EP (1989) Gas-phase electron photodetachment spectroscopy of the molecular anions of nitroaromatic hydrocarbons at atmospheric pressure. J Am Chem Soc 111:2861–2870. https://doi.org/10.1021/ja00190a020

    Article  CAS  Google Scholar 

  43. Chowdhury S, Kishi H (1989) Electron affinities of substituted nitrobenzenes. Can J Chem 67:603–610

    Article  CAS  Google Scholar 

  44. Martinsen DP (1976) Determination of the site of protonation of substituted benzenes in water chemical. Org Mass Spectrom 11:762–772

    Article  CAS  Google Scholar 

  45. Lide D (2007) CRC handbook of chemistry and physics, 88th edn. CRC Press, Taylor & Francis, Boca Raton

    Google Scholar 

  46. Mineva T, Parvanov V, Petrov I et al (2001) Fukui indices from perturbed Kohn-sham Orbitals and regional softness from Mayer atomic valences. J Phys Chem A 105:1959–1967. https://doi.org/10.1021/jp003458w

    Article  CAS  Google Scholar 

  47. Millefiori S, Alparone A (1998) (hyper)polarizability conventional of chalcogenophenes C4H4X (X = 0, S, se, Te) ab initio and density functional theory study. J Mol Struct 1280:59–78

    Article  Google Scholar 

  48. Ja SA, Kolandaivel P (1997) Condensed Fukui function: dependency on atomic charges. Mol Phys 90:55–62. https://doi.org/10.1080/002689797172868

    Article  Google Scholar 

  49. Gazquez JL, Mendez F (1994) The hard and soft acids and bases principle: an atoms in molecules viewpoint. J Phys Chem 98:4591–4593. https://doi.org/10.1021/j100068a018

    Article  CAS  Google Scholar 

  50. Mendez F, Gazquez JL (1994) Chemical reactivity of enolate ions: the local hard and soft acids and bases principle viewpoint. J Am Chem Soc 116:9298–9301. https://doi.org/10.1021/ja00099a055

    Article  CAS  Google Scholar 

  51. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  52. Lu T, Chen F (2012) Quantitative analysis of molecular surface based on improved marching Tetrahedra algorithm. J Mol Graph Model 38:314–323. https://doi.org/10.1016/j.jmgm.2012.07.004

    Article  CAS  PubMed  Google Scholar 

  53. Sannigrahi AB, Nandi PK, Schleyer PR (1993) Ab initio theoretical study of the electronic structure, stability and bonding of dialkali halide cations. Chem Phys Lett 204:73–79. https://doi.org/10.1016/0009-2614(93)85607-P

  54. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  55. Calhorda MJ, Lopes PEM (2000) An “atoms in molecules” (AIM) analysis of the dihydrogen bond in organometallic compounds. J Organomet Chem 609:53–59. https://doi.org/10.1016/S0022-328X(00)00235-7

    Article  Google Scholar 

  56. Solimannejad M, Malekani M, Alkorta I (2010) Theoretical study of the halogen-hydride complexes between XeH2 and carbon halogenated derivatives. J Mol Struct THEOCHEM 955:140–144. https://doi.org/10.1016/j.theochem.2010.06.004

    Article  CAS  Google Scholar 

  57. Liyanage PS, de Silva RM, de Silva KMN (2003) Nonlinear optical (NLO) properties of novel organometallic complexes: high accuracy density functional theory (DFT) calculations. J Mol Struct THEOCHEM 639:195–201. https://doi.org/10.1016/j.theochem.2003.08.009

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the University of the Free State and the NRF in South Africa for financial support (Grant Nos: 109673, 113327 and 96111) and CHPC for the simulation facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adebayo A. Adeniyi or Jeanet Conradie.

Ethics declarations

Conflict of interest

This work does not require any ethical statement and contains no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 451 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adeniyi, A.A., Conradie, J. Computational insight into the contribution of para-substituents on the reduction potential, proton affinity, and electronic properties of nitrobenzene compounds. J Mol Model 25, 78 (2019). https://doi.org/10.1007/s00894-019-3946-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-3946-2

Keywords

Navigation