Skip to main content
Log in

Main chemical species and molecular structure of deep eutectic solvent studied by experiments with DFT calculation: a case of choline chloride and magnesium chloride hexahydrate

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The infrared spectrum of deep eutectic solvent of choline chloride and magnesium chloride hexahydrate was measured by the FTIR spectroscopy and analyzed with the aid of DFT calculations. The main chemical species and molecular structure in deep eutectic solvent of [MgClm(H2O)6-m]2-m and [ChxCly]x+y complexes were mainly identified and the active ion of magnesium complex during the electrochemical process was obtained. The mechanism of the electrochemical process of deep eutectic solvent of choline chloride and magnesium chloride hexahydrate was well explained by combination theoretical calculations and experimental. Besides, based on our results we proposed a new system for the dehydration study of magnesium chloride hexahydrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abbott AP, Capper G, Davies DL, Munro HL, Rasheed RK, Tambyrajah V (2001) Chem Commun 19:2010

    Article  Google Scholar 

  2. Kareem MA, Mjalli FS, Hashim MA, AlNashe IM (2010) J Chem Eng Data 55:4632

    Article  CAS  Google Scholar 

  3. Abbott AP, Harris RC, Ryder JKS (2007) Phys Chem B 111:4910

    CAS  Google Scholar 

  4. Whitehead AH, Pölzler M, Gollas B (2010) J Electroanal Chem 157:D328

    Article  CAS  Google Scholar 

  5. Abbott AP, Harris RC, Ryder JKS, D'Agostino C, Gladden LF, Mantle MD (2011) Green Chem 13:82

    Article  CAS  Google Scholar 

  6. Abbott AP, Capper GC, Davies DL, Tambyrajah RRV (2001) Int Pat WO:0226701

  7. Wang H, Jing Y, Wang X, Yao Y, Jia Y (2011) J Mol Liq 163:77

    Article  CAS  Google Scholar 

  8. Pereira NM, Fernandes PV, Pereira CM, Silva AF (2012) J Electrochem Soc 159:D501

    Article  CAS  Google Scholar 

  9. Abbott AP, Ttaib KE, Frisch G, McKenzie KJ, Ryder KS (2009) Phys Chem Phys 11:4269

    Article  CAS  Google Scholar 

  10. Yang HY, Guo XW, Chen XB, Wang SH, Wu GH, Ding WJ, Birbilis N (2012) Electrochim Acta 63:131

    Article  CAS  Google Scholar 

  11. Wang H, Jing Y, Wang X, Yao Y, Jia Y (2013) Electrochim Acta 108:384

    Article  CAS  Google Scholar 

  12. Akai N, Kawai A, Shibuya K (2010) J Phys Chem B 114:12662

    CAS  Google Scholar 

  13. Weingärtner H (2008) Angew Chem Int Ed 47:654

    Article  Google Scholar 

  14. Esperanca J M S S, Lopes JNC, Tariq M, Santos LMNBF, Magee JW, Rebelo LPN (2009) J Chem Eng Data 55:3

  15. Tsuzuki S, Tokuda H, Hayamizu K, Watanabe MJ (2005) Phys Chem B109:16474

    Google Scholar 

  16. Tsuzuki S, Arai AA, Nishikawa K (2008) J Phys Chem B 112:7739

    CAS  Google Scholar 

  17. Paulechka YU, Kabo GJ, Emel’yanenko VN (2008) J Phys Chem B 112:15708

    CAS  Google Scholar 

  18. Becke AD (1988) Phys ReV Ser A 38:3098, (b) (1993). J Chem Phys 98:1372

    Google Scholar 

  19. Frisch MJ, Trucks G W, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JRMontgomery, JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2010) Gaussian 09 revision C 01. Gaussian Inc, Wallingford, CT

  20. Bock CW, Katz AK, Glusker J (1995) J Am Chem Soc 117:3754

    Article  CAS  Google Scholar 

  21. Katz AK, Glusker JP, Beebe SA, Bock CW (1996) J Am Chem Soc 118:5752

    Article  CAS  Google Scholar 

  22. Markham GD, Glusker JP, Bock CL, Trachtman M, Bock CW (1996) J Phys Chem 100:3488

    CAS  Google Scholar 

  23. Abbott AP, Harris RC, Ryder KS (2007) J Phys Chem B 111:4910

    CAS  Google Scholar 

  24. Bondi A (1965) J Phys Chem 68:3488

    Google Scholar 

  25. Abbott AP, Capper G, Davies DL, Rasheed RK (2004) Chem Eur J 15:3769

    Article  Google Scholar 

  26. Cui Y, Hua Y (2011) [D] Kunming University of Science and Technology 116

  27. Yang W, Zhang T, Li (2009) J Acta Chim Sinica 67:1851

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (No. 21176243 and No. 51274186). The Computer Network Information Center (CNIC) is also acknowledged for high-performance computing services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Jia, Y., Jing, Y. et al. Main chemical species and molecular structure of deep eutectic solvent studied by experiments with DFT calculation: a case of choline chloride and magnesium chloride hexahydrate. J Mol Model 20, 2374 (2014). https://doi.org/10.1007/s00894-014-2374-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2374-6

Keywords

Navigation