Skip to main content

Advertisement

Log in

Investigation on the mechanism for the binding and drug resistance of wild type and mutations of G86 residue in HIV-1 protease complexed with Darunavir by molecular dynamic simulation and free energy calculation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Residue Gly86 is considered as the highly conversed residue in the HIV-1 protease. In our work, the detailed binding free energies for the wild-type (WT) and mutated proteases binding to the TMC-114 are estimated to investigate the protein-inhibitor binding and drug resistance mechanism by molecule dynamic simulations and molecular mechanics Poisson Boltzmann surface area (MM-PBSA) method. The binding affinities between the mutants and inhibitor are different than that in the wild-type complex and the major resistance to Darunavir (DRV) of G86A and G86S originate from the electrostatic energy and entropy, respectively. Furthermore, free energy decomposition analysis for the WT and mutated complexes on the basis of per-residue indicates that the mutagenesis influences the energy contribution of the residue located at three regions: active site region (residue 24–32), the flap region, and the region around the mutated residue G86 (residue 79–88), especially the flap region. Finally, further hydrogen bonds and structure analysis are carried out to detect the relationship between the energy and conformation. In all, the G86 mutations change the flap region’s conformation. The experimental results are in good agreement with available results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wlodawer A (2002) Rational approach to AIDS drug design through structural biology. Annu Rev Med 53:595–614

    Article  CAS  Google Scholar 

  2. Swain AL, Miller MM, Green J, Rich DH, Schneider J, Kent SBH, Wlodawer A (1990) X-ray crystallographic structure of a complex between a synthetic protease of human immunodeficiency virus-1 and a substrate-based hydroxyethylamine inhibitor. Proc Natl Acad Sci U S A 87:8805–8809

    Article  CAS  Google Scholar 

  3. Wlodawer A, Miller M, Jaskolski M, Sathyanarayana BK, Baldwin E, Weber IT, Selk LM, Clawson L, Schneider J, Kent SBH (1989) Conserved folding in retroviral proteases-crystal-structure of a synthetic HIV-1 protease. Science 245:616–621

    Article  CAS  Google Scholar 

  4. Navia MA, Fitzgerald PMD, Mckeever BM, Leu CT, Heimbach JC, Herber WK, Sigal IS, Darke PL, Springer JP (1989) 3-dimensional structure of aspartyl protease from human immunodeficiency virus Hiv-1. Nature 337:615–620

    Article  CAS  Google Scholar 

  5. Barbaro G, Scozzafava A, Mastrolorenzo A, Supuran CT (2005) Highly active antiretroviral therapy: current state of the art, new agents and their pharmacological interactions useful for improving therapeutic outcome. Curr Pharm Des 11:1805–1843

    Article  CAS  Google Scholar 

  6. Surleraux DLNG, Tahri A, Verschueren WG, Pille GME, Kock HA, Jonckers THM, Peeters A, Meyer DS, Azijn H, Pauwels R, de Bethune MP, King NM, Prabu-Jeyabalan M, Schiffer CA, Wigerinck PBTP (2005) Discovery and selection of TMC114, a next generation HIV-1 protease inhibitor. J Med Chem 48:1813–1822

    Article  CAS  Google Scholar 

  7. Chen RX, Quinones-Mateu ME, Mansky LM (2004) Drug resistance, virus fitness and HIV-1 mutagenesis. Curr Pharm Des 10:4065–4070

    Article  CAS  Google Scholar 

  8. Clavel F, Hance AJ (2004) Medical progress: HIV drug resistance. N Engl J Med 350:1023–1035

    Article  CAS  Google Scholar 

  9. Ishima R, Gong Q et al (2010) Highly conserved glycine 86 and arginine 87 residues contribute differently to the structure and activity of the mature HIV-1 protease. Proteins 78:1015–1025

    Article  CAS  Google Scholar 

  10. Hou TJ, Yu R (2007) Molecular dynamics and free energy studies on the wild-type and double mutant HIV-1 protease complexed with amprenavir and two amprenavir-related inhibitors: mechanism for binding and drug resistance. J Med Chem 50:1177–1188

    Article  CAS  Google Scholar 

  11. Meher BR, Wang Y (2012) Interaction of I50V mutant and I50L/A71V double mutant HIV-protease with inhibitor TMC114 (Darunavir): molecular dynamics simulation and binding free energy studies. J Phys Chem B 116:1884–1900

    Article  CAS  Google Scholar 

  12. Pearl LH, Taylor WR (1987) A structural model for the retroviral proteases. Nature 329:351–354

    Article  CAS  Google Scholar 

  13. Rao JKM, Erickson JW, Wlodawer A (1991) Structural and evolutionary relationships between retroviral an eucaryotic aspartic proteinases. Biochemistry 30:4663–4671

    Article  CAS  Google Scholar 

  14. Loeb DD, Swanstrom R, Everitt L, Manchester M, Stamper SE, Hutchison CA III (1989) Complete mutagenesis of the HIV-1 protease. Nature 340:397–400

    Article  CAS  Google Scholar 

  15. Shao W, Everitt L, Manchester M, Loeb DD, Hutchison CA III, Swanstrom R (1997) Sequence requirements of the HIV-1 protease flap region determined by saturation mutagenesis and kinetic analysis of flap mutants. Proc Natl Acad Sci U S A 94:2243–2248

    Article  CAS  Google Scholar 

  16. Weber IT (1990) Comparison of the crystal structures and intersubunit interactions of human immunodeficiency and Rous sarcoma virus proteases. J Biol Chem 265:10492–10496

    CAS  Google Scholar 

  17. Ishima R, Torchia DA, Louis JM (2007) Mutational and structural studies aimed at characterizing the monomer of HIV-1 protease and its precursor. J Biol Chem 282:17190–17199

    Article  CAS  Google Scholar 

  18. Louis JM, Ishima R, Nesheiwat I, Pannell LK, Lynch SM, Torchia DA, Gronenborn AM (2003) Revisiting monomeric HIV-1 protease. Characterization and redesign for improved properties. J Biol Chem 278:6085–6092

    Article  CAS  Google Scholar 

  19. Mahalingam B, Louis JM, Hung J, Harrison RW, Weber IT (2001) Structural implications of drug-resistant mutants of HIV-1 protease: high-resolution crystal structures of the mutant protease/substrate analogue complexes. Proteins 43:455–464

    Article  CAS  Google Scholar 

  20. Adcock SA, McCammon JA (2006) Molecular dynamics: survey of methods for simulating the activity of proteins. Chem Rev 106:1589–1615

    Article  CAS  Google Scholar 

  21. Kollman PA, Massova I, Reyes C, Kuhn B, Huo SH, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897

    Article  CAS  Google Scholar 

  22. Li L, Chen H, Zhao RN, Han JG (2013) The investigations on HIV-1 gp120 bound with BMS-488043 by using docking and molecular dynamics simulations. J Mol Model 19:905–917

    Article  CAS  Google Scholar 

  23. Wang W, Kollman PA (2000) Free energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model. J Mol Biol 303:567–582

    Article  CAS  Google Scholar 

  24. Wang W, Kollman PA (2001) Computational study of protein specificity: the molecular basis of HIV-1 protease drug resistance. Proc Natl Acad Sci U S A 98:14937–14942

    Article  CAS  Google Scholar 

  25. Li D, Han JG, Chen H, Li L, Zhao RN, Liu G, Duan Y (2012) Insights into the structural function of the complex of HIV-1 protease with TMC-126: molecular dynamics simulations and free-energy calculations. J Mol Model 18:1841–1845

    Article  CAS  Google Scholar 

  26. Wang J, Morin P, Wang W, Kollman PA (2001) Use of MM-PBSA in reproducing the binding free energies to HIV-1RT of TIBO derivates and predicting the binding mode to HIV-1 RTof Efavirenz by docking and MM-PBSA. J Am Chem Soc 123:5221–5230

    Article  CAS  Google Scholar 

  27. Kuhn B, Gerber P, Schulz-Gasch T, Stahl M (2005) Validation and use of the MM-PBSA approach for drug discovery. J Med Chem 48:4040–4048

    Article  CAS  Google Scholar 

  28. Huo S, Wang J, Cieplak P, Kollman PA, Kuntz ID (2002) Molecular dynamics and free energy analyses of cathepsin D-inhibitor interactions: insight into structure-based ligand design. J Med Chem 45:1412–1419

    Article  CAS  Google Scholar 

  29. Kollman PA (1993) Free-energy calculations-applications to chemical and biochemical phenomena. Chem Rev 93:2395–2417

    Article  CAS  Google Scholar 

  30. Gohlke H, Kiel C, Case DA (2003) Insights into protein–protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J Mol Biol 330:891–913

    Article  CAS  Google Scholar 

  31. Zoete V, Meuwly M, Karplus M (2005) Study of the insulin dimerization: binding free energy calculations and per-residue free energy decomposition. Proteins 61:79–93

    Article  CAS  Google Scholar 

  32. Chen XN, Tropsha A (1995) Relative binding free energies of peptide inhibitors of HIV-1 protease: the influence of the active site protonation state. J Med Chem 38:42–48

    Article  CAS  Google Scholar 

  33. Tie Y, Boross PI, Wang YF, Gaddis L, Hussain AK, Leshchenko S, Ghosh AK, Louis JM, Harrison RW, Weber IT (2004) High resolution crystal structures of HIV-1 protease with a potent non-peptide inhibitor [UIC-94017] active against multidrug-resistant clinical strains. J Mol Biol 338:341–352

    Article  CAS  Google Scholar 

  34. Kovalevsky AY, Tie Y, Liu F, Boross PI, Wang YF, Leshchenko S, Ghosh AK, Harrison RW, Weber IT (2006) Effectiveness of nonpeptide clinical inhibitor TMC-114 on HIV-1 protease with highly drug resistant mutations D30N, I50 V, and L90M. J Med Chem 49:1379–1387

    Article  CAS  Google Scholar 

  35. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Crowley M, Walker RC, Zhang W, Merz KM, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Mathews DH, Seetin MG, Sagui C, Babin V, Kollman PA (2008) AMBER 10. University of California, San Francisco

    Google Scholar 

  36. Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  37. Jakalian A, Bush BL, Jack DB, Bayly CI (2000) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J Comput Chem 21:132–146

    Article  CAS  Google Scholar 

  38. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong GM, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang JM, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012

    Article  CAS  Google Scholar 

  39. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  40. Darden T, York D, Pedersen L (1993) Particle Mesh Ewald–an N. Log-[N] method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  41. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical-integration of Cartesian equations of motion of a system with constraints-molecular-dynamics of N-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  42. Weiser J, Shenkin PS, Still WC (1999) Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J Comput Chem 20:217–230

    Article  CAS  Google Scholar 

  43. Onufriev A, Bashford D, Case DA (2000) Modification of the generalized born model suitable for macromolecules. J Phys Chem B 104:3712–3720

    Article  CAS  Google Scholar 

  44. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  CAS  Google Scholar 

  45. Freedberg DI, Wang YX, Stahl SJ, Kaufman JD, Wingfield PT, Kiso Y, Torchia DA (1998) Flexibility and function in HIV protease: dynamics of the HIV-1 protease bound to the asymmetric inhibitor kynostatin 272 [KNI-272]. J Am Chem Soc 120:7916–7923

    Article  CAS  Google Scholar 

  46. Zoete V, Michielin O, Karplus M (2002) Relation between sequence and structure of HIV-1 protease inhibitor complexes: a model system for the analysis of protein flexibility. J Mol Biol 315:21–52

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by Natural Scientific Fund of China (11179035) and 973 fund of Chinese Ministry of Science and Technology (2010CB934504). This paper has been performed partly on the Supercomputing Center of University of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Song Fan or Ju-Guang Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Zhang, Y., Zhao, RN. et al. Investigation on the mechanism for the binding and drug resistance of wild type and mutations of G86 residue in HIV-1 protease complexed with Darunavir by molecular dynamic simulation and free energy calculation. J Mol Model 20, 2122 (2014). https://doi.org/10.1007/s00894-014-2122-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2122-y

Keywords

Navigation