Skip to main content
Log in

A test of improved force field parameters for urea: molecular-dynamics simulations of urea crystals

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Molecular-dynamics (MD) simulations of urea crystals of different shapes (cubic, rectangular prismatic, and sheet) have been performed using our previously published force field for urea. This force field has been validated by calculating values for the cohesive energy, sublimation temperature, and melting point from the MD data. The cohesive energies computed from simulations of cubic and rectangular prismatic urea crystals in vacuo at 300 K agreed very well with the experimental sublimation enthalpies reported at 298 K. We also found very good agreement between the melting points as observed experimentally and from simulations. Annealing the crystals just below the melting point leads to reconstruction to form crystal faces that are consistent with experimental observations. The simulations reveal a melting mechanism that involves surface (corner/edge) melting well below the melting point, and rotational disordering of the urea molecules in the corner/edge regions of the crystal, which then facilitates the translational motion of these molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bonin M, Marshall WG, Weber HP, Tolendo P (1999) Polymorphism in urea. IOP Publishing ISIS. http://www.isis.rl.ac.uk/archive/isis99/highlights/urea4.htm. Accessed August 1999.

  2. Mathews CK, van Holde KE (1996) Biochemistry, 2nd edn. Cummings, Menlo Park, CA, p 4

    Google Scholar 

  3. Bhatnagar VM (1968) Clathrates of urea and thiourea. J Struct Chem 8:513–529. doi:10.1007/BF00751656

    Article  Google Scholar 

  4. Theophanides T, Harvey PD (1987) Structural and spectroscopic properties of metal-urea complexes. Coord Chem Rev 76:237–264. doi:10.1016/0010-8545(87)85005-1

    Article  CAS  Google Scholar 

  5. Boek ES, Briels WJ (1993) Molecular dynamics simulations of aqueous urea solutions: Study of dimer stability and solution structure, and calculation of the total nitrogen radial distribution function GN(r). J Chem Phys 98:1422–1427. doi:10.1063/1.464306

    Article  CAS  Google Scholar 

  6. Boek ES, Briels WJ, van Eerden J, Feil D (1992) Molecular-dynamics simulations of interfaces between water and crystalline urea. J Chem Phys 96:7010–7018. doi:10.1063/1.462560

    Article  CAS  Google Scholar 

  7. Åstrand PO, Wallqvist A, Karlström G (1994) Molecular dynamics simulations of 2M aqueous urea solutions. J Phys Chem 98:8224–8233. doi:10.1021/j100084a046

    Article  Google Scholar 

  8. Åstrand PO, Wallqvist A, Karlström G (1994) Nonempirical intermolecular potentials for urea – water systems. J Chem Phys 100:1262–1273. doi:10.1063/1.466655

    Article  Google Scholar 

  9. Cristinziao P, Lelj F, Amodeo P, Barone V (1987) A molecular dynamics study of associations in solution. An NPT simulation of the urea dimer in water. Chem Phys Lett 140:401–405. doi:10.1016/0009-2614(87)80755-8

    Article  Google Scholar 

  10. Hermans J, Berendsen HJC, van Gunsteren WF, Postma JPM (1984) A consistent empirical potential for water–protein interactions. Biopolymers 23:1513–1518. doi:10.1002/bip.360230807

    Article  CAS  Google Scholar 

  11. Hagler AT, Huler E, Lifson S (1976) Energy functions for peptides and proteins. I. Derivation of a consistent force field including the hydrogen bond from amide crystals. J Am Chem Soc 96:5319–5327. doi:10.1021/ja00824a004

    Article  Google Scholar 

  12. Kallies B (2002) Coupling of solvent and solute dynamics—molecular dynamics simulations of aqueous urea solutions with different intramolecular potentials. Phys Chem Chem Phys 4:86–95. doi:10.1039/b105836n

    Article  CAS  Google Scholar 

  13. Caballo-Herrera A, Nilsson L (2006) Urea parameterization for molecular dynamics simulations. J Mol Struct THEOCHEM 758:139–148. doi:10.1016/j.theochem.2005.10.018

    Article  Google Scholar 

  14. Özpınar GA, Peukert W, Clark T (2010) An improved generalized AMBER force field (GAFF) for urea. J Mol Mod 16:1427–1440. doi:10.1007/s00894-010-0650-7

    Article  Google Scholar 

  15. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174. doi:10.1002/jcc.20035

    Article  CAS  Google Scholar 

  16. Moller C, Plesset MS (1934) Note on an Approximation Treatment for Many-Electron Systems. Phys Rev 46:618–622. doi:10.1103/PhysRev.46.618

    Article  CAS  Google Scholar 

  17. Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023. doi:10.1063/1.456153

    Article  CAS  Google Scholar 

  18. Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–10280. doi:10.1021/j100142a004

    Article  CAS  Google Scholar 

  19. Zavodnik V, Stash A, Tsirelson V, De Vires R, Feil D (1999) Electron density study of urea using TDS-corrected X-ray diffraction data: quantitative comparison of experimental and theoretical results. Acta Cryst B55:45–54. doi:10.1107/S0108768198005746

    CAS  Google Scholar 

  20. Vaughan P, Donohue J (1952) The structure of urea. Interatomic distances and resonance in urea and related compounds. Acta Cryst 5:530–535. doi:10.1107/S0365110X52001477

    Article  CAS  Google Scholar 

  21. Worsham JE, Levy HA, Peterson SE (1957) The positions of hydrogen atoms in urea by neutron diffraction. Acta Cryst 10:319–323. doi:10.1107/S0365110X57000924

    Article  Google Scholar 

  22. Materials Studio 5.0 (2009), Accelrys Software Inc., San Diego, CA.

  23. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Crowley M, Walker RC, Zhang W, Merz KM, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Mathews DH, Seetin MG, Sagui C, Babin V, Kollman PA (2008) AMBER 10. University of California, San Francisco

    Google Scholar 

  24. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995)A smooth particle mesh Ewald method. J Chem Phys 103:8577-8593. doi:10.1063/1.470117

    Google Scholar 

  25. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092. doi:10.1063/1.464397

    Article  CAS  Google Scholar 

  26. Civalleri B, Doll K, Zicovich-Wilson CM (2007) Ab initio investigation of structure and cohesive energy of crystalline urea. J Phys Chem B 111:26–33. doi:10.1021/jp065757c

    Article  CAS  Google Scholar 

  27. Civalleri B, Zicovich-Wilson CM, Valenzano L, Ugliengo P (2008) B3LYP augmented with an empirical dispersion term (B3LYP-D*) as applied to molecular crystals. Cryst Eng Comm 10:405–410. doi:10.1039/B715018K

    CAS  Google Scholar 

  28. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER 9. University of California, San Francisco

    Google Scholar 

  29. Turzi SS (2011) On the Cartesian definition of orientational order parameters. J Math Phys 52:053517

    Article  Google Scholar 

  30. Suzuki K, Onishi S, Koide T, Seki S (1956) Vapor pressures of molecular crystals. XI Vapor pressures of crystalline urea and diformylhydrazine. Energies of hydrogen bonds in these crystals. Bull Chem Soc Jpn 29:127–131. doi:10.1246/bcsj.29.127

    Article  CAS  Google Scholar 

  31. Ferro D, Barone G, Della Gatta G, Piacente V (1978) Vapour pressures and sublimation enthalpies of urea and some of its derivatives. J Chem Thermodyn 9:915–923. doi:10.1016/0021-9614(87)90038-3

    Google Scholar 

  32. Emel’yanenko VN (2006) Measurement and prediction of thermochemical properties: improved increments for the estimation of enthalpies of sublimation and standard enthalpies of formation of alkyl derivatives of urea. J Chem Eng Data 51:79–87. doi:10.1021/je050230z

    Article  Google Scholar 

  33. Zaitsau DZ, Kabo GJ, Kozyro AA, Sevruk VM (2003) The effect of the failure of isotropy of a gas in an effusion cell on the vapor pressure and enthalpy of sublimation for alkyl derivatives of carbamide. Thermochimica Acta 406:17–28. doi:10.1016/S0040-6031(03)00231-4

    Article  CAS  Google Scholar 

  34. De Wit HGM, van Miltenburg JC, De Kruif CG (1983) Thermodynamic properties of molecular organic crystals containing nitrogen, oxygen, and sulphur 1. Vapour pressures and enthalpies of sublimation. J Chem Thermodyn 15:651–663. doi:10.1016/002-9614(83)90079-4

    Article  Google Scholar 

  35. Gora RW, Bartkowiak W, Roszak S, Leszczynski J (2002) A new theoretical insight into the nature of intermolecular interactions in the molecular crystal of urea. J Chem Phys 117:1031–1039. doi:10.1063/1.1482069

    Article  CAS  Google Scholar 

  36. Tsuziki S, Orita H, Honda K, Mikami M (2010) First-principles lattice energy calculation of urea and hexamine crystals by a combination of periodic DFT and MP2 two-body interaction energy calculations. J Phys Chem B 114:6799–6805. doi:10.1021/jp912028q

    Article  Google Scholar 

  37. Brunsteiner M, Price SL (2001) Morphologies of organic crystals: sensitivity of attachment energy predictions to the model intermolecular potential. Cryst Growth Des 1:447–453. doi:10.1021/cg015541u

    Article  CAS  Google Scholar 

  38. Boek ES, Feil D, Briels WJ, Bennema P (1991) From wave function to crystal morphology: Application to urea and alpha-glycine. J Cryst Growth 114:389–410. doi:10.1016/0022-0248(91)90057-C

    Article  CAS  Google Scholar 

  39. Kabo G Ya, Miroshnichenko EA, Frenkel ML, Kozyro AA, Simirskii VV, Krasulin AP, Vorob'eva VP, Lebedev Yu A (1990) Thermochemistry of urea alkyl derivatives. Bull Acad Sci USSR, Div Chem Sci 662-667

  40. Stephenson RM, Malanowski S (1987) Handbook of the thermodynamics of organic compounds. Elsevier, New York

    Book  Google Scholar 

  41. Trimble LE, Voorhoeve RJH (1978) Continuous colorimetric monitoring of vapour-phase urea and cyanates. Analyst 103:759–765. doi:10.1039/AN9780300759

    Article  CAS  Google Scholar 

  42. Bradley RS, Cleasby TG (1953) The vapour pressure and lattice energy of hydrogen-bonded crystals. Part I. Oxamide, oxamic acid, and rubeanie acid. J Chem Soc London 1681-16.

  43. Paorici C, Zha M, Zanotti L, Attolini G, Traldi P, Catinella S (1995) Thermodynamic analysis of urea physical vapour transport. Cryst Res Technol 30:667–675. doi:10.1002/crat.2170300513

    Article  CAS  Google Scholar 

  44. Aylward GH, Findlay TJV (1986) Datensammlung Chemie in SI Einheiten, 2nd edn. Chemie, Weinheim

    Google Scholar 

  45. Tartaglino U, Zykova-Timan T, Ercolessi F, Tosatti E (2005) Melting and nonmelting of solid surfaces and nanosystems. Phys Reports 411:291–321. doi:10.1016/j.physrep.2005.01.004

    Article  CAS  Google Scholar 

  46. Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Weiner P (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 106:765–784. doi:10.1021/ja00315a051

    Article  CAS  Google Scholar 

  47. Haleblian J, McCrone W (1969) Pharmaceutical applications of polymorphism. J Pharm Sci 58:911–929. doi:10.1002/jps.2600580802

    Article  CAS  Google Scholar 

  48. Coombes DS, Catlow CRA, Gale JD, Hardy MJ, Saunders MR (2002) Theoretical and experimental investigations on the morphology of pharmaceutical crystals. J Pharm Sci 91:1652–1658. doi:10.1002/jps.10148

    Article  CAS  Google Scholar 

  49. Anwar J, Zahn D (2011) Uncovering molecular processes in crystal nucleation and growth by using molecular simulation. Angewandte Chem Int Edn 50:1996–2013. doi:10.1002/anie.201000463

    Article  CAS  Google Scholar 

  50. Kawska A, Brickmann J, Hochrein O, Zahn D (2005) From amorphous aggregates to crystallites: modelling studies of crystal growth in vacuum. Z Anorg Allg Chem 631:1172–1176. doi:10.1002/zaac.200400548

    Article  CAS  Google Scholar 

  51. Kawska A, Brickmann J, Kniep R, Hochrein O, Zahn D (2006) An atomistic simulation scheme for modeling crystal formation from solution. J Chem Phys 124:024513-1-024513-7. doi:10.1063/1.2145677

    Google Scholar 

  52. Kawska A, Duchstein P, Hochrein O, Zahn D (2008) Atomistic mechanisms of ZnO aggregation from ethanolic solution: ion association. Proton Transfer, and Self-Organization Nano Lett 8:2336–2340. doi:10.1021/nl801169x

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft as part of the project PE 42710-2 and the Excellence Cluster Engineering of Advanced Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Clark.

Additional information

Gül Altınbaş Özpınar and Frank R. Beierlein contributed equally to this work

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 7204 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özpınar, G.A., Beierlein, F.R., Peukert, W. et al. A test of improved force field parameters for urea: molecular-dynamics simulations of urea crystals. J Mol Model 18, 3455–3466 (2012). https://doi.org/10.1007/s00894-011-1336-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1336-5

Keywords

Navigation