Skip to main content

Advertisement

Log in

Limits to the three domains of life: lessons from community assembly along an Antarctic salinity gradient

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

A Correction to this article was published on 22 January 2024

This article has been updated

Abstract

Extremophiles exist among all three domains of life; however, physiological mechanisms for surviving harsh environmental conditions differ among Bacteria, Archaea and Eukarya. Consequently, we expect that domain-specific variation of diversity and community assembly patterns exist along environmental gradients in extreme environments. We investigated inter-domain community compositional differences along a high-elevation salinity gradient in the McMurdo Dry Valleys, Antarctica. Conductivity for 24 soil samples collected along the gradient ranged widely from 50 to 8355 µS cm−1. Taxonomic richness varied among domains, with a total of 359 bacterial, 2 archaeal, 56 fungal, and 69 non-fungal eukaryotic operational taxonomic units (OTUs). Richness for bacteria, archaea, fungi, and non-fungal eukaryotes declined with increasing conductivity (all P < 0.05). Principal coordinate ordination analysis (PCoA) revealed significant (ANOSIM R = 0.97) groupings of low/high salinity bacterial OTUs, while OTUs from other domains were not significantly clustered. Bacterial beta diversity was unimodally distributed along the gradient and had a nested structure driven by species losses, whereas in fungi and non-fungal eukaryotes beta diversity declined monotonically without strong evidence of nestedness. Thus, while increased salinity acts as a stressor in all domains, the mechanisms driving community assembly along the gradient differ substantially between the domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  • Adams BJ, Bardgett RD, Ayres E, Wall DH, Aislabie J, Bamforth S, Bargagli R, Cary C, Cavacini P, Connell L, Convey P, Fell JW, Frati F, Hogg ID, Newsham KK, O’Donnell A, Russell N, Seppelt RD, Stevens MI (2006) Diversity and distribution of Victoria Land biota. Soil Biol Biochem 38:3003–3018

    Article  CAS  Google Scholar 

  • Aislabie J, Jordan S, Barker G (2008) Relation between soil classification and bacterial diversity in soils of the Ross Sea region, Antarctica. Geoderma 144:9–20

    Article  CAS  Google Scholar 

  • Aislabie J, Jordan S, Ayton J, Klassen JL, Barker GM, Turner S (2009) Bacterial diversity associated with ornithogenic soil of the Ross Sea region, Antarctica. Can J Microbiol 55:21–36

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amaral-Zettler LA, McCliment EA, Ducklow HW, Huse SM (2009) A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE 4:e6372

    Article  PubMed  PubMed Central  Google Scholar 

  • Andreotti R, Perez de Leon AA, Dowd SE, Guerrero FD, Bendele KG, Scoles GA (2011) Assessment of bacterial diversity in the cattle tick Rhipicephalus (Boophilus) microplus through tag-encoded pyrosequencing. BMC Microbiol 11:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arenz B, Blanchette R (2011) Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula, Ross Sea Region and McMurdo Dry Valleys. Soil Biol Biochem 43:308–315

    Article  CAS  Google Scholar 

  • Baker-Austin C, Dopson M (2007) Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15:165–171

    Article  CAS  PubMed  Google Scholar 

  • Bamforth SS, Wall DH, Virginia RA (2005) Distribution and diversity of soil protozoa in the McMurdo Dry Valleys of Antarctica. Polar Biol 28:756–762

    Article  Google Scholar 

  • Barrett J, Virginia RA, Wall DH, Parsons AN, Powers LE, Burkins MB (2004) Variation in biogeochemistry and soil biodiversity across spatial scales in a polar desert ecosystem. Ecology 85:3105–3118

    Article  Google Scholar 

  • Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Global Ecol Biogeogr 19:134–143

    Article  Google Scholar 

  • Baselga A, Leprieur F (2015) Comparing methods to separate components of beta diversity. Methods Ecol Evol 6:1069–1079

    Article  Google Scholar 

  • Baselga A, Orme CDL (2012) betapart: an R package for the study of beta diversity. Methods Ecol Evol 3:808–812

    Article  Google Scholar 

  • Bernhard AE, Donn T, Giblin AE, Stahl DA (2005) Loss of diversity of ammonia-oxidizing bacteria correlates with increasing salinity in an estuary system. Environ Microbiol 7:1289–1297

    Article  CAS  PubMed  Google Scholar 

  • Bernhard AE, Tucker J, Giblin AE, Stahl DA (2007) Functionally distinct communities of ammonia-oxidizing bacteria along an estuarine salinity gradient. Environ Microbiol 9:1439–1447

    Article  CAS  PubMed  Google Scholar 

  • Bintrim SB, Donohue TJ, Handelsman J, Roberts GP, Goodman RM (1997) Molecular phylogeny of Archaea from soil. PNAS 94:277–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaxter M, Mann J, Chapman T, Thomas F, Whitton C, Floyd R, Abebe E (2005) Defining operational taxonomic units using DNA barcode data. Philos Trans R Soc Lond, b, Biol Sci 360:1935–1943

    Article  CAS  PubMed  Google Scholar 

  • Boey JS, Mortimer R, Couturier A, Worrallo K, Handley KM (2021) Estuarine microbial diversity and nitrogen cycling increase along sand-mud gradients independent of salinity and distance. Environ Microbiol. https://doi.org/10.1111/1462-2920.15550

    Article  PubMed  Google Scholar 

  • Bottos EM, Laughlin DC, Herbold CW, Lee CK, McDonald IR, Cary SC (2020) Abiotic factors influence patterns of bacterial diversity and community composition in the Dry Valleys of Antarctica. FEMS Microbiol Ecol 96:fiaa042

    Article  CAS  PubMed  Google Scholar 

  • Bouali M, Zrafi-Nouira I, Bakhrouf A, Le Paslier D, Chaussonnerie S, Ammar E, Sghir A (2012) The structure and spatio-temporal distribution of the Archaea in a horizontal subsurface flow constructed wetland. Sci Total Environ 435–436:465–471

    Article  PubMed  Google Scholar 

  • Buelow HN, Winter AS, Van Horn DJ, Barrett JE, Gooseff MN, Schwartz E, Takacs-Vesbach CD (2016) Microbial community responses to increased water and organic matter in the arid soils of the McMurdo Dry Valleys Antarctica. Front Microbiol 7:1040

    Article  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010a) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267

    Article  CAS  PubMed  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010b) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cary SC, McDonald IR, Barrett JE, Cowan DA (2010) On the rocks: the microbiology of Antarctic Dry Valley soils. Nat Rev Microbiol 8:129–138

    Article  CAS  PubMed  Google Scholar 

  • Casamayor EO, Massana R, Benlloch S, Øvreås L, Díez B, Goddard VJ, Gasol JM, Joint I, Rodríguez-Valera F, Pedrós-Alió C (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol 4:338–348

    Article  PubMed  Google Scholar 

  • Castro-Insua A, Gómez-Rodríguez C, Baselga A (2016) Break the pattern: breakpoints in beta diversity of vertebrates are general across clades and suggest common historical causes. Glob Ecol Biogeogr 25:1279–1283

    Article  Google Scholar 

  • Cavicchioli R (2002) Extremophiles and the search for extraterrestrial life. Astrobiology 2:281–292

    Article  CAS  PubMed  Google Scholar 

  • Cavicchioli R, Amils R, Wagner D, McGenity T (2011) Life and applications of extremophiles. Environ Microbiol 13:1903–1907

    Article  PubMed  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Clarke A (2003) Evolution and low temperatures. In: Rothschild L, Lister A (eds) Evolution on planet earth: impact of the physical environment. Academic Press

  • Clow GD, McKay CP, Simmons GM, Wharton RA (1988) Climatological observations and predicted sublimation rates at Lake Hoare, Antarctica. J Clim 1:715–728

    Article  CAS  PubMed  Google Scholar 

  • Colman DR, Thomas R, Maas KR, Takacs-Vesbach CD (2015) Detection and analysis of elusive members of a novel and diverse archaeal community within a thermal spring streamer consortium. Extremophiles 19:307–313

    Article  PubMed  Google Scholar 

  • Colman DR, Poudel S, Hamilton TL, Havig JR, Selensky MJ, Shock EL, Boyd ES (2018) Geobiological feedbacks and the evolution of thermoacidophiles. ISME J 12:225–236

    Article  CAS  PubMed  Google Scholar 

  • Conca JL, Astor AM (1987) Capillary moisture flow and the origin of cavernous weathering in dolerites of Bull Pass, Antarctica. Geology 15:151–154

    Article  Google Scholar 

  • Connell L, Redman R, Craig S, Rodriguez R (2006) Distribution and abundance of fungi in the soils of Taylor Valley, Antarctica. Soil Biol Biochem 38:3083–3094

    Article  CAS  Google Scholar 

  • Courtright EM, Wall DH, Virginia RA (2001) Determining habitat suitability for soil invertebrates in an extreme environment: the McMurdo Dry Valleys, Antarctica. Antarct Sci 13:9–17

    Article  Google Scholar 

  • DeLong JP, Okie JG, Moses ME, Sibly RM, Brown JH (2010) Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. PNAS 107:12941–12945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doran PT, Wharton RA, Des Marais DJ, McKay CP (1998) Antarctic paleolake sediments and the search for extinct life on Mars. J Geophys Res Planets 103:28481–28493

    Article  CAS  Google Scholar 

  • Doran PT, McKay CP, Clow GD, Dana GL, Fountain AG, Nylen T, Lyons WB (2002) Valley floor climate observations from the McMurdo Dry Valleys, Antarctica, 1986–2000. J Geophys Res Atmos 107:ACL 13-11-ACL 13-12

  • Dowd SE, Sun Y, Wolcott RD, Domingo A, Carroll JA (2008) Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) for microbiome studies: bacterial diversity in the ileum of newly weaned Salmonella-infected pigs. Foodborne Pathog Dis 5:459–472

    Article  CAS  PubMed  Google Scholar 

  • Dsouza M, Taylor MW, Turner SJ, Aislabie J (2015) Genomic and phenotypic insights into the ecology of Arthrobacter from Antarctic soils. BMC Genomics 16:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  • Egamberdieva D, Renella G, Wirth S, Islam R (2010) Secondary salinity effects on soil microbial biomass. Biol Fertil Soils 46:445–449

    Article  CAS  Google Scholar 

  • Feeser KL, Van Horn DJ, Buelow HN, Colman DR, McHugh TA, Okie JG, Schwartz E, Takacs-Vesbach CD (2018) Local and regional scale heterogeneity drive bacterial community diversity and composition in a polar desert. Front Microbiol 9:1928

    Article  PubMed  PubMed Central  Google Scholar 

  • Fell JW, Scorzetti G, Connell L, Craig S (2006) Biodiversity of micro-eukaryotes in Antarctic Dry Valley soils with< 5% soil moisture. Soil Biol Biochem 38:3107–3119

    Article  CAS  Google Scholar 

  • Fountain AG, Lyons WB, Burkins MB, Dana GL, Doran PT, Lewis KJ, McKnight DM, Moorhead DL, Parsons AN, Priscu JC, Wall DH, Wharton RA, Virginia RA (1999) Physical controls on the Taylor Valley ecosystem, Antarctica. Bioscience 49:961–971

    Article  Google Scholar 

  • Fountain AG, Nylen TH, Monaghan A, Basagic HJ, Bromwich D (2010) Snow in the McMurdo Dry Valleys, Antarctica. Int J Climatol 30:633–642

    Article  Google Scholar 

  • Freckman DW, Virginia RA (1997) Low-diversity Antarctic soil nematode communities: distribution and response to disturbance. Ecology 78:363–369

    Article  Google Scholar 

  • Geyer KM, Altrichter AE, Van Horn DJ, Takacs-Vesbach CD, Gooseff MN, Barrett JE (2013) Environmental controls over bacterial communities in polar desert soils. Ecosphere 4:art127

    Article  Google Scholar 

  • Giovannoni SJ, DeLong EF, Schmidt TM, Pace NR (1990) Tangential flow filtration and preliminary phylogenetic analysis of marine picoplankton. Appl Environ Microbiol 56:2572–2575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40:237–264

    Article  Google Scholar 

  • Gorbushina AA, Kotlova ER, Sherstneva OA (2008) Cellular responses of microcolonial rock fungi to long-term desiccation and subsequent rehydration. Stud Mycol 61:91–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gostincar C, Grube M, Gunde-Cimerman N (2011) Evolution of fungal pathogens in domestic environments? Fungal Biol 115:1008–1018

    Article  PubMed  Google Scholar 

  • Guo H, Hu Z, Zhang H, Hou Z, Min W (2019) Soil microbial metabolic activity and community structure in drip-irrigated calcareous soil as affected by irrigation water salinity. Water, Air, Soil Pollut 230:44

    Article  Google Scholar 

  • Hall BL, Denton GH, Overturf B (2001) Glacial Lake Wright, a high-level Antarctic lake during the LGM and early Holocene. Antarct Sci 13:53–60

    Article  Google Scholar 

  • Hendershot JN, Read QD, Henning JA, Sanders NJ, Classen AT (2017) Consistently inconsistent drivers of microbial diversity and abundance at macroecological scales. Ecology 98:1757–1763

    Article  PubMed  Google Scholar 

  • Høj L, Olsen RA, Torsvik VL (2008) Effects of temperature on the diversity and community structure of known methanogenic groups and other archaea in high Arctic peat. ISME J 2:37

    Article  PubMed  Google Scholar 

  • Isobe K, Ikutani J, Fang Y, Yoh M, Mo J, Suwa Y, Yoshida M, Senoo K, Otsuka S, Koba K (2018) Highly abundant acidophilic ammonia-oxidizing archaea causes high rates of nitrification and nitrate leaching in nitrogen-saturated forest soils. Soil Biol Biochem 122:220–227

    Article  CAS  Google Scholar 

  • Jiang X, Takacs-Vesbach CD (2017) Microbial community analysis of pH 4 thermal springs in Yellowstone National Park. Extremophiles 21:135–152

    Article  PubMed  Google Scholar 

  • Kashefi K, Lovley DR (2003) Extending the upper temperature limit for life. Science 301:934–934

    Article  CAS  PubMed  Google Scholar 

  • Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56:211–236

    Article  CAS  PubMed  Google Scholar 

  • Keshtacher-Liebso E, Hadar Y, Chen Y (1995) Oligotrophic bacteria enhance algal growth under iron-deficient conditions. Appl Environ Microbiol 61:2439–2441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kogej T, Ramos J, Plemenitaš A, Gunde-Cimerman N (2005) The halophilic fungus Hortaea werneckii and the halotolerant fungus Aureobasidium pullulans maintain low intracellular cation concentrations in hypersaline environments. Appl Environ Microbiol 71:6600–6605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kogej T, Gostinčar C, Volkmann M, Gorbushina AA, Gunde-Cimerman N (2006) Mycosporines in extremophilic fungi—novel complementary osmolytes? Environ Chem 3:105–110

    Article  CAS  Google Scholar 

  • Lawley B, Ripley S, Bridge P, Convey P (2004) Molecular analysis of geographic patterns of eukaryotic diversity in Antarctic soils. Appl Environ Microbiol 70:5963–5972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CK, Barbier BA, Bottos EM, McDonald IR, Cary SC (2012) The inter-valley soil comparative survey: the ecology of Dry Valley edaphic microbial communities. ISME J 6:1046–1057

    Article  CAS  PubMed  Google Scholar 

  • Leibold MA, Mikkelson GM (2002) Coherence, species turnover, and boundary clumping: elements of meta-community structure. Oikos 97:237–250

    Article  Google Scholar 

  • Levy J (2013) How big are the McMurdo Dry Valleys? Estimating ice-free area using Landsat image data. Antarct Sci 25:119–120

    Article  Google Scholar 

  • Li X, Wang A, Wan W, Luo X, Zheng L, He G, Huang D, Chen W, Huang Q (2021) High salinity inhibits soil bacterial community mediating nitrogen cycling. Appl Environ Microbiol 87:e0136621

    Article  PubMed  Google Scholar 

  • Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. PNAS 104:11436–11440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R (2011) UniFrac: an effective distance metric for microbial community comparison. ISME J 5:169–172

    Article  PubMed  Google Scholar 

  • Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2013) Cluster: cluster analysis basics and extensions

  • Mellon MT, McKay CP, Heldmann JL (2014) Polygonal ground in the McMurdo Dry Valleys of Antarctica and its relationship to ice-table depth and the recent Antarctic climate history. Antarct Sci 26:413–426

    Article  Google Scholar 

  • Mitchell KR, Takacs-Vesbach CD (2008) A comparison of methods for total community DNA preservation and extraction from various thermal environments. J Ind Microbiol Biotechnol 35:1139–1147

    Article  CAS  PubMed  Google Scholar 

  • Niederberger TD, McDonald IR, Hacker AL, Soo RM, Barrett JE, Wall DH, Cary SC (2008) Microbial community composition in soils of Northern Victoria Land, Antarctica. Environ Microbiol 10:1713–1724

    Article  CAS  PubMed  Google Scholar 

  • Niederberger TD, Sohm JA, Gunderson TE, Parker AE, Tirindelli J, Capone DG, Carpenter EJ, Cary SC (2015) Microbial community composition of transiently wetted Antarctic Dry Valley soils. Front Microbiol 6:1–12

    Article  Google Scholar 

  • Nkem JN, Virginia RA, Barrett JE, Wall DH, Li G (2006) Salt tolerance and survival thresholds for two species of Antarctic soil nematodes. Polar Biol 29:643–651

    Article  Google Scholar 

  • Okie JG, Van Horn DJ, Storch D, Barrett JE, Gooseff MN, Kopsova L, Takacs-Vesbach CD (2015) Niche and metabolic principles explain patterns of diversity and distribution: theory and a case study with soil bacterial communities. Proc Biol Sci 282:20142630

    PubMed  PubMed Central  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Oksanen MJ, Suggests M (2013) Package ‘vegan’. Community ecology package Version 2:0-0

  • Oren A (2002a) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2002b) Halophilic microorganisms and their environments, vol 5. Springer Science & Business Media

  • Poage MA, Barrett JE, Virginia RA, Wall DH (2008) The influence of soil geochemistry on nematode distribution, Mcmurdo Dry Valleys, Antarctica. Arct Antarct Alp Res 40:119–128

    Article  Google Scholar 

  • Power JF, Carere CR, Lee CK, Wakerley GLJ, Evans DW, Button M, White D, Climo MD, Hinze AM, Morgan XC, McDonald IR, Cary SC, Stott MB (2018) Microbial biogeography of 925 geothermal springs in New Zealand. Nat Commun 9:2876

    Article  PubMed  PubMed Central  Google Scholar 

  • Prentice ML, Bockheim JG, Wilson SC, Burckle LH, Hodell DA, Schluchter C, Kellogg DE (1993) Late Neogene Antarctic glacial history: evidence from central Wright Valley. Antarct Paleoenviron 2(60):207–250

    Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöcker FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590-596

    Article  CAS  PubMed  Google Scholar 

  • Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ (2011) Removing noise from pyrosequenced amplicons. BMC Bioinformatics 12:38

    Article  PubMed  PubMed Central  Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rath KM, Murphy DN, Rousk J (2019) The microbial community size, structure, and process rates along natural gradients of soil salinity. Soil Biol Biochem 138:107607

    Article  CAS  Google Scholar 

  • Richter I, Herbold CW, Lee CK, McDonald IR, Barrett JE, Cary SC (2014) Influence of soil properties on archaeal diversity and distribution in the McMurdo Dry Valleys, Antarctica. FEMS Microbiol Ecol 89:347–359

    Article  CAS  PubMed  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  CAS  PubMed  Google Scholar 

  • Sang S, Zhang X, Dai H, Hu BX, Ou H, Sun L (2018) Diversity and predictive metabolic pathways of the prokaryotic microbial community along a groundwater salinity gradient of the Pearl River Delta, China. Sci Rep 8:1–11

    Article  Google Scholar 

  • Schwartz E, Van Horn DJ, Buelow HN, Okie JG, Gooseff MN, Barrett JE, Takacs-Vesbach CD (2014) Characterization of growing bacterial populations in McMurdo Dry Valley soils through stable isotope probing with 18O-water. FEMS Microbiol Ecol 89:415–425

    Article  CAS  PubMed  Google Scholar 

  • Schweiger AH, Irl SDH, Steinbauer MJ, Dengler J, Beierkuhnlein C (2016) Optimizing sampling approaches along ecological gradients. Methods Ecol Evol 7:463–471

    Article  Google Scholar 

  • Seki K, Toyoshima M (1998) Preserving tardigrades under pressure. Nature 395:853–854

    Article  CAS  Google Scholar 

  • Smith JL, Barrett JE, Tusnády G, Rejtö L, Cary SC (2010) Resolving environmental drivers of microbial community structure in Antarctic soils. Antarct Sci 22:673–680

    Article  Google Scholar 

  • Soininen J, Heino J, Wang J (2018) A meta-analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Glob Ecol Biogeogr 27:96–109

    Article  Google Scholar 

  • Stieglmeier M, Klingl A, Alves RJE, Rittmann SKR, Melcher M, Leisch N, Schleper C (2014) Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota. Int J Syst Evol Microbiol 64:2738–2752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stomeo F, Makhalanyane TP, Valverde A, Pointing SB, Stevens MI, Cary CS, Tuffin MI, Cowan DA (2012) Abiotic factors influence microbial diversity in permanently cold soil horizons of a maritime-associated Antarctic Dry Valley. FEMS Microbiol Ecol 82:326–340

    Article  CAS  PubMed  Google Scholar 

  • Tiao G, Lee CK, McDonald IR, Cowan DA, Cary SC (2012) Rapid microbial response to the presence of an ancient relic in the Antarctic Dry Valleys. Nat Commun 3:660

    Article  PubMed  Google Scholar 

  • Treonis AM, Wall DH, Virginia RA (1999) Invertebrate biodiversity in Antarctic Dry Valley soils and sediments. Ecosystems 2:482–492

    Article  Google Scholar 

  • Turk M, Abramovic Z, Plemenitaš A, Gunde-Cimerman N (2007) Salt stress and plasma-membrane fluidity in selected extremophilic yeasts and yeast-like fungi. FEMS Yeast Res 7:550–557

    Article  CAS  PubMed  Google Scholar 

  • Valentine DL (2007) Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat Rev Microbiol 5:316–323

    Article  CAS  PubMed  Google Scholar 

  • Van Horn DJ, Van Horn ML, Barrett JE, Gooseff MN, Altrichter AE, Geyer KM, Zeglin LH, Takacs-Vesbach CD (2013) Factors controlling soil microbial biomass and bacterial diversity and community composition in a cold desert ecosystem: role of geographic scale. PLoS ONE 8:e66103

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Horn DJ, Okie JG, Buelow HN, Gooseff MN, Barrett JE, Takacs-Vesbach CD (2014) Soil microbial responses to increased moisture and organic resources along a salinity gradient in a polar desert. Appl Environ Microbiol 80:3034–3043

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Horn DJ, Wolf CR, Colman DR, Jiang X, Kohler TJ, McKnight DM, Stanish LF, Yazzie T, Takacs-Vesbach CD (2016) Patterns of bacterial biodiversity in the glacial meltwater streams of the McMurdo Dry Valleys Antarctica. FEMS Microbiol Ecol 92:fiw148

    Article  PubMed  PubMed Central  Google Scholar 

  • Vander Vorste R, Timpano AJ, Cappellin C, Badgley BD, Zipper CE, Schoenholtz SH (2019) Microbial and macroinvertebrate communities, but not leaf decomposition, change along a mining-induced salinity gradient. Freshw Biol 64:671–684

    Article  CAS  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virginia RA, Wall DH (1999) How soils structure communities in the Antarctic Dry Valleys. Bioscience 49:973–983

    Article  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Yang D, Zhang Y, Shen J, Van Der Gast C, Hahn MW, Wu Q (2011) Do patterns of bacterial diversity along salinity gradients differ from those observed for macroorganisms? PLoS ONE 6:e27597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Chen S, Chen L, Wang D (2019) Saline stress modifies the effect of cadmium toxicity on soil archaeal communities. Ecotoxicol Environ Saf 182:109431

    Article  CAS  PubMed  Google Scholar 

  • Wharton RA Jr, Crosby JM, McKay CP, Rice JW Jr (1995) Paleolakes on Mars. J Paleolimnol 13:267–283

    Article  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc 18:315–322

    Google Scholar 

  • Wu B, Liu F, Weiser MD, Ning D, Okie JG, Shen L, Li J, Chai B, Deng Y, Feng K (2018) Temperature determines the diversity and structure of N2O-reducing microbial assemblages. Funct Ecol 32:1867–1878

    Article  Google Scholar 

  • Zeglin L, Dahm C, Barrett J, Gooseff M, Fitpatrick S, Takacs-Vesbach C (2011) Bacterial community structure along moisture gradients in the parafluvial sediments of two ephemeral desert streams. Microb Ecol 61:543–556

    Article  PubMed  Google Scholar 

  • Zhalnina KV, Dias R, Leonard MT, Dorr de Quadros P, Camargo FA, Drew JC, Farmerie WG, Daroub SH, Triplett EW (2014) Genome sequence of Candidatus Nitrososphaera evergladensis from group I1b enriched from Everglades soil reveals novel genomic features of the ammonia-oxidizing archaea. PLoS ONE 9:e101648

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the support staff at McMurdo Station for their assistance, as well as Raytheon Company, Inc. and Petroleum Helicopters, Inc. for logistical support. We appreciate assistance with sample processing provided by George Rosenberg of the Center for Evolutionary and Theoretical Immunology (CETI), University of New Mexico.

Funding

This work was funded by NSF Grant OPP1142096 awarded to CT-V, DV, and ES. The McMurdo LTER (NSF Grant OPP1115245) provided additional support to CT-V and DV acknowledges support from NSF Grant OPP124599. The DNA sequencing reported in this publication was done by the Molecular Biology Facility in the Department of Biology and the Center for Evolutionary and Theoretical Immunology at the University of New Mexico, which is supported by the National Institute of General Medical Sciences of the National Institutes of HB under Award Number P30GM110907. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina D. Takacs-Vesbach.

Additional information

Communicated by A. Oren.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Table S1. BLAST results of OTUs exclusively present in the high salinity group (XLSX 13 KB)

792_2022_1262_MOESM2_ESM.docx

Table S2. Results of general linear model analysis: Jaccard beta diversity versus mean log EC (conductivity) in bacteria (DOCX 18 KB)

792_2022_1262_MOESM3_ESM.docx

Table S3. Results of general linear model analysis: Jaccard beta diversity versus mean log EC (conductivity) in fungi (DOCX 15 KB)

792_2022_1262_MOESM4_ESM.docx

Table S4. Results of general linear model analysis: Jaccard beta diversity versus mean log EC (conductivity) in non-fungal eukaryotes (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Van Horn, D.J., Okie, J.G. et al. Limits to the three domains of life: lessons from community assembly along an Antarctic salinity gradient. Extremophiles 26, 15 (2022). https://doi.org/10.1007/s00792-022-01262-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00792-022-01262-3

Keywords

Navigation