Skip to main content

Advertisement

Log in

Evaluation of the protective effects of non-thermal atmospheric plasma on alveolar bone loss in experimental periodontitis

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The inhibition of bone destruction is one of the main goals of periodontitis treatment. The aim of this study was to investigate the protective effects of non-thermal atmospheric plasma (NTAP) on alveolar bone loss radiographically, histomorphometrically, and histologically in experimental periodontitis in rats.

Materials and methods

A total of twenty-eight rats were randomly divided into three groups: control group (CG) (n = 8), periodontitis group (PG) (n = 10), and NTAP group (NTAPG) (n = 10). In PG and NTAPG, experimental periodontitis was created with ligating. The kINPen 11 plasma jet was applied around the ligatured teeth in NTAPG. The samples from each group were radiographically assessed with microcomputed tomography (micro-CT); then, histological (presence of osteoclasts and inflammatory cells) and immunohistochemical (immunoreactive of OCN and ALP) findings were compared.

Results

The results revealed a significant increase in alveolar bone loss in the PG compared with CG and NTAPG (p < 0.05). Inflammation, alveolar resorption, and cement damage were reduced significantly in the group treated with NTAP compared to the PG (p < 0.05). Significantly higher levels of osteoclasts were detected in the PG in comparison with both CG and NTAPG (p < 0.05). The lowest osteocalcin and ALP values were determined in PG, and the differences between PG and both groups were also significant (p < 0.05).

Conclusion

Within the limitations of the present study, we can say that NTAP may enhance the bone remodeling process by inhibiting inflammation and preventing alveolar bone destruction.

Clinical relevance

NTAP has clinical potential for accelerating and treating periodontitis with the inflammatory response modulation, osteoblast differentiation, and alveolar bone loss reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Berglundh T, Donati M (2005) Aspects of adaptive host response in periodontitis. J Clin Periodontol 32:87–107

    Article  PubMed  Google Scholar 

  2. Curtis MA, Diaz PI, Van Dyke TE (2020) The role of the microbiota in periodontal disease. Periodontol 2020 83:14–25

    Google Scholar 

  3. Joseph S, Curtis MA (2021) Microbial transitions from health to disease. Periodontology 2000 86:201–209

    Article  PubMed  Google Scholar 

  4. Hathaway-Schrader JD, Novince CM (2021) Maintaining homeostatic control of periodontal bone tissue. Periodontol 2000 86:157–187

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hashimi SM (2019) Exogenous noggin binds the BMP-2 receptor and induces alkaline phosphatase activity in osteoblasts. J Cell Biochem 120:13237–13242

    Article  PubMed  Google Scholar 

  6. Qin D, Zhang H, Zhang H, Sun T, Zhao H, Lee WH (2019) Anti-osteoporosis effects of osteoking via reducing reactive oxygen species. J Ethnopharmacol 244:112045

    Article  PubMed  Google Scholar 

  7. Khan SA, Kong EF, Meiller TF, Jabra-Rizk MA (2015) Periodontal diseases: bug induced, host promoted. PLoS Pathog 11(7):e1004952

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sanz-Sanchez I, Ortiz-Vigon A, Herrera D, Sanz M (2016) Microbiological effects and recolonization patterns after adjunctive subgingival debridement with Er:YAG laser. Clin Oral Invest 20:1253–1261

    Article  Google Scholar 

  9. Assem NZ, Alves MLF, Lopes AB, Gualberto Junior EC, Garcia VG, Theodoro LH (2017) Antibiotic therapy as an adjunct to scaling and root planing in smokers: a systematic review and meta-analysis. Braz Oral Res 31:e67

    Article  PubMed  Google Scholar 

  10. Jepsen K, Jepsen S (2016) Antibiotics/antimicrobials: systemic and local administration in the therapy of mild to moderately advanced periodontitis. Periodontol 2000 71:82–112

    Article  PubMed  Google Scholar 

  11. Scholtz V, Pazlarova J, Souskova H, Khun J, Julak J (2015) Nonthermal plasma—a tool for decontamination and disinfection. Biotechnol Adv 33:1108–1119

    Article  PubMed  Google Scholar 

  12. Bekeschus S, Schmidt A, Weltmann KD, von Woedtke T (2016) The plasma jet kINPen–a powerful tool for wound healing. Clin Plasma Med 4:19–28

    Article  Google Scholar 

  13. Choi BBR, Choi JH, Ji J, Song KW, Lee HJ, Kim GC (2018) Increment of growth factors in mouse skin treated with non-thermal plasma. Int J Med Sci 15:1203

    Article  PubMed  PubMed Central  Google Scholar 

  14. De Lima V, Bezerra MM, de Menezes Alencar VB, Daniel Portela Vidal F, Da Rocha FAC, de Castro Brito GA, de Albuquerque RR (2000) Effects of chlorpromazine on alveolar bone loss in experimental periodontal disease in rats. Eur J Oral Sci 108:123–129

    Article  PubMed  Google Scholar 

  15. Socransky SS, Haffajee AD (1992) The bacterial etiology of destructive periodontal disease: current concepts. J Periodontol 63:322–331

    Article  PubMed  Google Scholar 

  16. Albandar JM (2000) (2002) Global risk factors and risk indicators for periodontal diseases. Periodontol 29:177–206

    Article  Google Scholar 

  17. Isbary G, Morfill G, Schmidt HU, Georgi M, Ramrath K, Heinlin J, Karrer S, Landthaler M, Shimizu T, Steffes B, Bunk W, Monetti R, Zimmermann JL, Pompl R, Stolz W (2010) A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br J Dermatol 163:78–82

    Article  PubMed  Google Scholar 

  18. Koban I, Jablonowski L, Kramer A, Weltmann KD, Kocher T (2012) Medical plasma in dentistry: a future therapy for peri-implantitis. In: Machala Z, Hensel K, Akishev Y (eds) Plasma for bio-decontamination, medicine and food security. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht, pp 191–200

    Google Scholar 

  19. Von Woedtke T, Reuter S, Masur K, Weltmann KD (2013) Plasmas for medicine. Phys Rep 530:291–320

    Article  Google Scholar 

  20. Graves DB (2012) The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D Appl Phys 45:263001

    Article  Google Scholar 

  21. Duchesne C, Banzet S, Lataillade J, Rousseau A, Frescaline N (2019) Cold atmospheric plasma modulates endothelial nitric oxide synthase signalling and enhances burn wound neovascularisation. J Pathol 249:368–380

    Article  PubMed  Google Scholar 

  22. Arndt S, Unger P, Berneburg M, Bosserhoff AK, Karrer S (2018) Cold atmospheric plasma (CAP) activates angiogenesis-related molecules in skin keratinocytes, fibroblasts and endothelial cells and improves wound angiogenesis in an autocrine and paracrine mode. J Dermatol Sci 89:181–190

    Article  PubMed  Google Scholar 

  23. Roy J, Galano JM, Durand T, Le Guennec JY, Lee JCY (2017) Physiological role of reactive oxygen species as promoters of natural defenses. FASEB J 31:3729–3745

    Article  PubMed  Google Scholar 

  24. Boeckmann L, Schäfer M, Bernhardt T, Semmler ML, Jung O, Ojak G, Fischer T, Peters K, Nebe B, Müller-Hilke B, Seebauer C, Bekeschus S, Emmert S (2020) Cold atmospheric pressure plasma in wound healing and cancer treatment. Appl Sci 10:6898

    Article  Google Scholar 

  25. Tominami K, Kanetaka H, Sasaki S, Mokudai T, Kaneko T, Niwano Y (2017) Cold atmospheric plasma enhances osteoblast differentiation. PLoS One 12:e0180507

    Article  PubMed  PubMed Central  Google Scholar 

  26. Seibel MJ (2000) Molecular markers of bone turnover: biochemical, technical and analytical aspects. Osteoporos Int 11:18–29

    Article  Google Scholar 

  27. Lian JB, Gundberg CM (1988) Osteocaicin: biochemical considerations and clinical applications. Clin Orthop Relat Res 226:267–291

    Article  Google Scholar 

  28. Delmas RD (1991) What do we know about biochemical bone markers? Baillieres Clin Obstet Gynaecol 5:817–830

    Article  PubMed  Google Scholar 

  29. Coleman JE (1992) Structure and mechanism of alkaline phosphatase. Annu Rev Biophys Biomol Struct 21:441–483

    Article  PubMed  Google Scholar 

  30. Eggers B, Marciniak J, Memmert S, Kramer FJ, Deschner J, Nokhbehsaim M (2020) The beneficial effect of cold atmospheric plasma on parameters of molecules and cell function involved in wound healing in human osteoblast-like cells in vitro. Odontology 108:1–10

  31. Han I, Choi EH (2017) The role of non-thermal atmospheric pressure biocompatible plasma in the differentiation of osteoblastic precursor cells, MC3T3-E1. Oncotarget 8:36399

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yumoto H, Hirao K, Tominaga T, Bando N, Takahashi K, Matsuo T (2015) Electromagnetic wave irradiation promotes osteoblastic cell proliferation and up-regulates growth factors via activation of the ERK1/2 and p38 MAPK pathways. Cell Physiol Biochem 35:601–615

    Article  PubMed  Google Scholar 

  33. Hirose Y (1995) Effect of pulsing electromagnetic fields on the proliferation and differentiation of osteoblast-like cells. Studies on using immunohistochemical and histochemical staining techniques. J Jpn Prosehodont Soc 39:159–164

    Article  Google Scholar 

  34. Lee DE, Kim JH, Choi SH, Cha JH, Bak EJ, Yoo YJ (2015) Periodontitis mainly increases osteoclast formation via enhancing the differentiation of quiescent osteoclast precursors into osteoclasts. J Per Res 50:256–264

    Article  Google Scholar 

  35. Przekora A, Pawlat J, Terebun P, Duday D, Canal C, Hermans S, Audemar M, Labay C, Thomann JS, Ginalska G (2019) The effect of low temperature atmospheric nitrogen plasma on MC3T3-E1 preosteoblast proliferation and differentiation in vitro. J Phys D Appl Phys 52:275401

    Article  Google Scholar 

  36. Kwon JS, Kim YH, Choi EH, Kim KN (2013) The effects of non-thermal atmospheric pressure plasma jet on attachment of osteoblast. Curr Appl Phys 13:42–47

    Article  Google Scholar 

  37. Knight ET, Liu J, Seymour GJ, Faggion CM Jr (2000) Cullinan MP (2016) Risk factors that may modify the innate and adaptive immune responses in periodontal diseases. Periodontol 71:22–51

    Article  Google Scholar 

  38. Reynolds MA (2014) Modifiable risk factors in periodontitis: at the intersection of aging and disease. Periodontol 2000 64:7–19

    Article  PubMed  Google Scholar 

  39. Li Q, Valerio MS, Kirkwood KL (2012) MAPK usage in periodontal disease progression. J Signal Transduct 2012:308943

    Article  PubMed  PubMed Central  Google Scholar 

  40. Amini MR, Hosseini MS, Fatollah S, Mirpour S, Ghoranneviss M, Larijani B, Mohajeri-Tehrani MR, Khorramizadeh MR (2020) Beneficial effects of cold atmospheric plasma on inflammatory phase of diabetic foot ulcers; a randomized clinical trial. J Diabetes Metab Disord 19:1–11

  41. Küçük D, Savran L, Ercan UK, Yarali ZB, Karaman O, Kantarci A, Saglam M, Köseoğlu S (2020) Evaluation of efficacy of non-thermal atmospheric pressure plasma in treatment of periodontitis: a randomized controlled clinical trial. Clin Oral Investig 24:3133–3145

    Article  PubMed  Google Scholar 

  42. Zhang Y, Xiong Y, Xie P, Ao X, Zheng Z, Dong X, Li H, Yu Q, Zhu Z, Chen M, Chen W (2018) Non-thermal plasma reduces periodontitis-induced alveolar bone loss in rats. Biochem Biophys Res Commun 503:2040–2046

    Article  PubMed  Google Scholar 

  43. Gupta R, Galgali SR, Bavle RM, Chandavarkar V (2013) Evaluation of thickness of cementum of periodontally diseased teeth of non-diabetic and type 2 diabetic patients: a scanning electron microscopy study. J Indian Soc Periodontol 17:592–596

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bilgin E, Gurgan CA, Arpak MN, Bostanci HS, Guven K (2004) Morphological changes in diseased cementum layers: a scanning electron microscopy study. Calcif Tissue Int 74:476–785

    Article  PubMed  Google Scholar 

  45. Bartold PM, McCulloch CAG, Narayanan AS (2000) Pitaru S (2000) Tissue engineering: a new paradigm for periodontal regeneration based on molecular and cell biology. Periodontol 24:253–269

    Article  Google Scholar 

  46. Han G, Nguyen LN, Macherla C, Chi Y, Friedman JM, Nosanchuk JD, Martinez LR (2012) Nitric oxide–releasing nanoparticles accelerate wound healing by promoting fibroblast migration and collagen deposition. Am J Pathol 180:1465–1473

    Article  PubMed  Google Scholar 

  47. Oz HS, Puleo DA (2011) Animal models for periodontal disease. BioMed Res Int 2011:754857

    Google Scholar 

  48. Klausen B (1991) Microbiological and immunological aspects of experimental periodontal disease in rats: a review article. J Periodontol 62:59–73

    Article  PubMed  Google Scholar 

  49. Toker H, Ozan F, Ozer H, Ozdemir H, Eren K, Yeler H (2008) A morphometric and histopathologic evaluation of the effects of propolis on alveolar bone loss in experimental periodontitis in rats. J Periodontol 79:1089–1094

    Article  PubMed  Google Scholar 

  50. Misch KA, Yi ES, Sarment DP (2006) Accuracy of cone beam computed tomography for periodontal defect measurements. J Periodontol 77:1261–1266

    Article  PubMed  Google Scholar 

  51. Alpan AL, Çalisir M, Kizildag A, Özdede M, Özmen Ö (2020) Effects of a glycogen synthase kinase 3 inhibitor tideglusib on bone regeneration with calvarial defects. J Craniofac Surg 31:1477–1482

    Google Scholar 

  52. Nicolielo LFP, Van Dessel J, Shaheen E, Letelier C, Codari M, Politis C, Lambrichts I, Jacobs R (2017) Validation of a novel imaging approach using multi-slice CT and cone-beam CT to follow-up on condylar remodeling after bimaxillary surgery. Int J Oral Sci 9:139–144

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kulah K, Gulsahi A, Kamburoğlu K, Geneci F, Ocak M, Celik HH, Ozen T (2019) Evaluation of maxillary trabecular microstructure as an indicator of implant stability by using 2 cone beam computed tomography systems and micro-computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 127:247–256

    Article  Google Scholar 

  54. Jungbauer G, Moser D, Müller S, Pfister W, Sculean A, Eick S (2021) The antimicrobial effect of cold atmospheric plasma against dental pathogens—a systematic review of in-vitro studies. Antibiotics 10:211

    Article  PubMed  PubMed Central  Google Scholar 

  55. Menezes M, Prado M, Gomes B, Gusman H, Simao R (2016) Effect of photodynamic therapy and non-thermal plasma on root canal filling: analysis of adhesion and sealer penetration. J Appl Oral Sci 25:396–403

    Article  Google Scholar 

Download references

Funding

This study was supported by the Scientific Research Project Coordination Center of Eskisehir Osmangazi University in Eskisehir, Turkey (grant number 2019-2479).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basak Kusakcı-Seker.

Ethics declarations

Ethics approval

The experimental protocol and design were performed in accordance with guidelines laid down by the National Institutes of Health in the USA regarding the care and use of animals for experimental procedures or with the European Communities Council Directive (2010/63/EU) and approved by the Animal Research Ethics Committee of Eskisehir Osmangazi University (Protocol No. 661–1/2019). The study protocol and manuscript were created according to the “NC3Rs ARRIVE Guidelines, Animal Research: Reporting of in Vivo Experiments.”

Informed consent

For this type of study, formal consent is not required.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusakcı-Seker, B., Ozdemir, H. & Karadeniz-Saygili, S. Evaluation of the protective effects of non-thermal atmospheric plasma on alveolar bone loss in experimental periodontitis. Clin Oral Invest 25, 6949–6959 (2021). https://doi.org/10.1007/s00784-021-04203-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-021-04203-0

Keywords

Navigation