Skip to main content

Advertisement

Log in

Chlorhexidine rinsing inhibits biofilm formation and causes biofilm disruption on dental enamel in situ

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

This in situ study aims to evaluate the effects of chlorhexidine (CHX) mouth rinsing on biofilm formation and moreover on the disruption of existing mature dental biofilms.

Methods

Biofilms were formed in situ by five volunteers on bovine enamel specimens fixed to individual acrylic splints. For biofilm formation analysis, the volunteers intraorally exposed the splint for 48 h. Mouth rinsing using 10 ml of 0.2% CHX or water as control was performed for 30 s every 12 h. For analysis of biofilm disruption, the biofilm was formed on enamel specimens for 48 h. Then, the first CHX rinse was carried out. A second rinse followed after an additional 12 h, again for 30 s using 10 ml of 0.2% CHX. Biofilm vitality was imaged by fluorescence microscopy after vital fluorescence staining. Additionally, the ultrastructure of the biofilm was examined by transmission electron microscopy.

Results

Rinses with 0.2% CHX significantly reduced biofilm formation on enamel. Both biofilm colonization and vitality were dramatically impaired. Moreover, a considerable biofilm disruption induced by the CHX rinses was observed. Remarkably, a single application of CHX to a 48-h mature biofilm causes biofilm ultrastructure alterations and induces a substantial reduction in biofilm thickness and bacterial vitality.

Conclusions

CHX mouth rinses induced a significant inhibition of biofilm formation on native enamel. Furthermore, an important biofilm disrupting effect under in situ conditions was detected.

Clinical Relevance: CHX rinses could be used as a short-term treatment protocol for biofilm management focused on patients unable to reach adequate oral hygiene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zaura E, Keijser BJ, Huse SM, Crielaard W (2009) Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol 9:259. https://doi.org/10.1186/1471-2180-9-259

    Article  PubMed  PubMed Central  Google Scholar 

  2. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE (2005) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43(11):5721–5732. https://doi.org/10.1128/JCM.43.11.5721-5732.2005

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hannig M (1999) Ultrastructural investigation of pellicle morphogenesis at two different intraoral sites during a 24-h period. Clin Oral Investig 3(2):88–95. https://doi.org/10.1007/s007840050084

    Article  PubMed  Google Scholar 

  4. Socransky SS (2000) Haffajee AD (2002) Dental biofilms: difficult therapeutic targets. Periodontol 28:12–55. https://doi.org/10.1034/j.1600-0757.2002.280102.x

    Article  Google Scholar 

  5. Auschill TM, Hein N, Hellwig E, Follo M, Sculean A, Arweiler NB (2005) Effect of two antimicrobial agents on early in situ biofilm formation. J Clin Periodontol 32(2):147–152. https://doi.org/10.1111/j.1600-051X.2005.00650.x

    Article  PubMed  Google Scholar 

  6. Arweiler NB, Hellwig E, Sculean A, Hein N, Auschill TM (2004) Individual vitality pattern of in situ dental biofilms at different locations in the oral cavity. Caries Res 38(5):442–447. https://doi.org/10.1159/000079625

    Article  PubMed  Google Scholar 

  7. Takahashi N, Nyvad B (2008) Caries ecology revisited: microbial dynamics and the caries process. Caries Res 42(6):409–418. https://doi.org/10.1159/000159604

    Article  PubMed  Google Scholar 

  8. Brading MG, Marsh PD (2003) The oral environment: the challenge for antimicrobials in oral care products. Int Dent J 53:353–362. https://doi.org/10.1111/j.1875-595X.2003.tb00910.x

    Article  PubMed  Google Scholar 

  9. Loe H, Theilade E, Jensen SB (1965) Experimental gingivitis in man. J Periodontol 36:177–187. https://doi.org/10.1902/jop.1965.36.3.177

    Article  PubMed  Google Scholar 

  10. Listgarten MA (1988) The role of dental plaque in gingivitis and periodontitis. J Clin Periodontol 15(8):485–487. https://doi.org/10.1111/j.1600-051X.1988.tb01019.x

    Article  PubMed  Google Scholar 

  11. Lindhe J, Koch G (1967) The effect of supervised oral hygiene on the gingivae of children. J Periodontal Res 2(3):215–220. https://doi.org/10.1111/j.1600-0765.1967.tb01892.x

    Article  PubMed  Google Scholar 

  12. Swallow JN, Davies DE, Hawkins SD (1969) Gingival disease prevalence in mentally handicapped adults. The effects of an oral hygiene programme. Br Dent J 127(8):376–379

    PubMed  Google Scholar 

  13. Addy M (2000) Moran JM (1997) Clinical indications for the use of chemical adjuncts to plaque control: chlorhexidine formulations. Periodontol 15:52–54. https://doi.org/10.1111/j.1600-0757.1997.tb00104.x

    Article  Google Scholar 

  14. ten Cate JM, Marsh PD (1994) Procedures for establishing efficacy of antimicrobial agents for chemotherapeutic caries prevention. J Dent Res 73(3):695–703. https://doi.org/10.1177/00220345940730031601

    Article  PubMed  Google Scholar 

  15. Van Strydonck DAC, Slot DE, Velden U, Weijden F (2012) Effect of a chlorhexidine mouthrinse on plaque, gingival inflammation and staining in gingivitis patients: a systematic review. J Clin Periodontol 39:1042–1055. https://doi.org/10.1111/j.1600-051X.2012.01883.x

    Article  PubMed  Google Scholar 

  16. Addy M, Moran J (2008) Chemical supragingival plaque control. In: Lindhe J, Karring T, Lang NP (eds) Clinical periodontology and implant dentistry, 5rd edn. Blackwell Munksgaard, Oxford, pp 734–765

    Google Scholar 

  17. Lang N, Brecx MC (1986) Chlorhexidine digluconate-an agent for chemical plaque control and prevention of gingival inflammation. J Periodontal Res 21(s16):74–89. https://doi.org/10.1111/j.1600-0765.1986.tb01517.x

    Article  Google Scholar 

  18. Gunsolley JC (2010) Clinical efficacy of antimicrobial mouthrinses. J Dent 38(Suppl 1):S6–S10. https://doi.org/10.1016/S0300-5712(10)70004-X

    Article  PubMed  Google Scholar 

  19. Lima KC, Fava LR, Siqueira JF (2001) Susceptibilities of Enterococcus faecalis biofilms to some antimicrobial medications. J Endod 27(10):616–619. https://doi.org/10.1097/00004770-200110000-00004

    Article  PubMed  Google Scholar 

  20. Brecx M, Theilade J (1984) Effect of chlorhexidine rinses on the morphology of early dental plaque formed on plastic film. J Clin Periodontol 11(9):553–564. https://doi.org/10.1111/j.1600-051X.1984.tb00908.x

    Article  PubMed  Google Scholar 

  21. Hannig M, Khanafer AK, Hoth-Hannig W, Al-Marrawi F, Acil Y (2005) Transmission electron microscopy comparison of methods for collecting in situ formed enamel pellicle. Clin Oral Investig 9(1):30–37. https://doi.org/10.1007/s00784-004-0284-1

    Article  PubMed  Google Scholar 

  22. Feng J, Cheng L, Zhou X, Xu HH, Weir MD, Meyer M, Maurer H, Li Q, Hannig M, Rupf S (2015) In situ antibiofilm effect of glass-ionomer cement containing dimethylaminododecyl methacrylate. Dent Mater 31(8):992–1002. https://doi.org/10.1016/j.dental.2015.05.005

    Article  PubMed  Google Scholar 

  23. Rupf S, Balkenhol M, Sahrhage TO, Baum A, Chromik JN, Ruppert K, Wissenbach DK, Maurer HH, Hannig M (2012) Biofilm inhibition by an experimental dental resin composite containing octenidine dihydrochloride. Dent Mater 28(9):974–984. https://doi.org/10.1016/j.dental.2012.04.034

    Article  PubMed  Google Scholar 

  24. García-Caballero L, Quintas V, Prada-López I, Seoane J, Donos N, Tomas I (2013) Chlorhexidine substantivity on salivary flora and plaque-like biofilm: an in situ model. PLoS One 8(12):e83522. https://doi.org/10.1371/journal.pone.0083522

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tómas I, García-Caballero L, Cousido MC, Limeres J, Alvarez M, Diz P (2009) Evaluation of chlorhexidine substantivity on salivary flora by epifluorescence microscopy. Oral Dis 15(6):428–433. https://doi.org/10.1111/j.1601-0825.2009.01570.x

    Article  PubMed  Google Scholar 

  26. Cousido MC, Tomas Carmona I, Garcia-Caballero L, Limeres J, Alvarez M, Diz P (2010) In vivo substantivity of 0.12% and 0.2% chlorhexidine mouthrinses on salivary bacteria. Clin Oral Investig 14(4):397–402. https://doi.org/10.1007/s00784-009-0320-2

    Article  PubMed  Google Scholar 

  27. Mathur S, Mathur T, Srivastava R, Khatri R (2011) Chlorhexidine: The gold standard in chemical plaque control. Natl J Physiol Pharm Pharmacol 1(2):45–50

    Google Scholar 

  28. Hugo WB, Longworth AR (1965) Cytological aspects of the mode of action of chlorhexidine diacetate. J Pharm Pharmacol 17:28–32. https://doi.org/10.1111/j.2042-7158.1965.tb07562.x

    Article  PubMed  Google Scholar 

  29. Hugo WB, Longworth AR (1966) The effect of chlorhexidine on the electrophoretic mobility, cytoplasmic constituents, dehydrogenase activity and cell walls of Escherichia coli and Staphylococcus aureus. J Pharm Pharmacol 18(9):569–578. https://doi.org/10.1111/j.2042-7158.1966.tb07935.x

    Article  PubMed  Google Scholar 

  30. Gilbert P, Moore LE (2005) Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol 99(4):703–715. https://doi.org/10.1111/j.1365-2672.2005.02664.x

    Article  PubMed  Google Scholar 

  31. Chawner JA, Gilbert P (1989) A comparative study of the bactericidal and growth inhibitory activities of the bisbiguanides alexidine and chlorhexidine. J Appl Bacteriol 66(3):243–252. https://doi.org/10.1111/j.1365-2672.1989.tb02475.x

    Article  PubMed  Google Scholar 

  32. Vitkov L, Hermann A, Krautgartner WD, Herrmann M, Fuchs K, Klappacher M, Hannig M (2005) Chlorhexidine-induced ultrastructural alterations in oral biofilm. Microsc Res Tech 68(2):85–89. https://doi.org/10.1002/jemt.20238

    Article  PubMed  Google Scholar 

  33. de Souza-E-Silva CM, da Silva Ventura TM, de Pau L, la Silva C, de Lima LA, Buzalaf MAR (2017) Effect of gels containing chlorhexidine or epigallocatechin-3-gallate on the protein composition of the acquired enamel pellicle. Arch Oral Biol 82:92–98. https://doi.org/10.1016/j.archoralbio.2017.05.024

    Article  PubMed  Google Scholar 

  34. von Ohle C, Gieseke A, Nistico L, Decker EM, DeBeer D, Stoodley P (2010) Real-time microsensor measurement of local metabolic activities in ex vivo dental biofilms exposed to sucrose and treated with chlorhexidine. Appl Environ Microbiol 76(7):2326–2334. https://doi.org/10.1128/AEM.02090-09

    Article  Google Scholar 

  35. Zaura-Arite E, van Marle J, ten Cate JM (2001) Confocal microscopy study of undisturbed and chlorhexidine-treated dental biofilm. J Dent Res 80:1436–1440. https://doi.org/10.1177/00220345010800051001

    Article  PubMed  Google Scholar 

  36. Pratten J, Barnett P, Wilson M (1998) Composition and susceptibility to chlorhexidine of multispecies biofilms of oral bacteria. Appl Environ Microbiol 64(9):3515–3519

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Birgit Leis and Belinda König for technical assistance with the samples processing for TEM analysis.

Funding

This study has been funded by the German Research Foundation (DFG, SFB 1027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Hannig.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were approved by the Ethical Committee of Saarland Medical Association, Germany (238/03, 2016). The study was also in accordance with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Hernández, M., Reda, B. & Hannig, M. Chlorhexidine rinsing inhibits biofilm formation and causes biofilm disruption on dental enamel in situ. Clin Oral Invest 24, 3843–3853 (2020). https://doi.org/10.1007/s00784-020-03250-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-020-03250-3

Keywords

Navigation