Skip to main content
Log in

Biophysical and morphological studies on the dual interaction of non-octarepeat prion protein peptides with copper and nucleic acids

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Conversion of prion protein (PrP) to an altered conformer, the scrapie PrP (PrPSc), is a critical step in the development of transmissible spongiform encephalopathies. Both Cu(II) and nucleic acid molecules have been implicated in this conversion. Full-length PrP can bind up to six copper ions; four Cu(II) binding sites are located in the octarepeat domain (residues 60–91), and His-96 and His-111 coordinate two additional copper ions. Experimental evidence shows that PrP binds different molecules, resulting in diverse cellular signaling events. However, there is little information about the interaction of macromolecular ligands with Cu(II)-bound PrP. Both RNA and DNA sequences can bind PrP, and this interaction results in reciprocal conformational changes. Here, we investigated the interaction of Cu(II) and nucleic acids with amyloidogenic non-octarepeat PrP peptide models (comprising human PrP residues 106–126 and hamster PrP residues 109–149) that retain His-111 as the copper-anchoring residue. The effect of Cu(II) and DNA or RNA sequences in the aggregation, conformation, and toxicity of PrP domains was investigated at low and neutral pH. Circular dichroism and EPR spectroscopy data indicate that interaction of the PrP peptides with Cu(II) and DNA occurs at pH 7. This dual interaction induces conformational changes in the peptides, modulating their aggregation, and affecting the morphology of the aggregated species, resulting in different cytotoxic effects. These results provide new insights into the role of Cu(II) and nucleic acid sequences in the structural conversion and aggregation of PrP, which are both critical events related to prion pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CD:

Circular dichroism

dsDNA:

Double-stranded DNA

EPR:

Electron paramagnetic resonance

LS:

Light scattering

MES:

2-(N-Morpholino)ethanesulfonic acid

PBS:

Phosphate-buffered saline

PrP:

Prion protein

PrPC :

Cellular prion protein

PrPSc :

Scrapie prion protein

rPrP:

Recombinant prion protein

TEM:

Transmission electron microscopy

References

  1. Prusiner SB (1998) Proc Natl Acad Sci USA 95:13363–13383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Linden R, Martins VR, Prado MA, Cammarota M, Izquierdo I, Brentani RR (2008) Physiol Rev 88:673–728

    Article  CAS  PubMed  Google Scholar 

  3. Brown DR, Qin K, Herms JW, Madlung A, Manson J, Strome R, Fraser PE, Kruck T, von Bohlen A, Schulz-Schaeffer W, Giese A, Westaway D, Kretzschmar H (1997) Nature 390:684–687

    Article  CAS  PubMed  Google Scholar 

  4. Viles JH, Cohen FE, Prusiner SB, Goodin DB, Wright PE, Dyson HJ (1999) Proc Natl Acad Sci USA 96:2042–2047

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Brown DR (2009) Dalton Trans 4069–4076. doi:10.1039/b822135a:4069-4076

    PubMed Central  Google Scholar 

  6. Millhauser GL (2007) Annu Rev Phys Chem 58:299–320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Riek R, Hornemann S, Wider G, Billeter M, Glockshuber R, Wuthrich K (1996) Nature 382:180–182

    Article  CAS  PubMed  Google Scholar 

  8. Burns CS, Aronoff-Spencer E, Legname G, Prusiner SB, Antholine WE, Gerfen GJ, Peisach J, Millhauser GL (2003) Biochemistry 42:6794–6803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Jones CE, Abdelraheim SR, Brown DR, Viles JH (2004) J Biol Chem 279:32018–32027

    Article  CAS  PubMed  Google Scholar 

  10. Rivillas-Acevedo L, Grande-Aztatzi R, Lomeli I, Garcia JE, Barrios E, Teloxa S, Vela A, Quintanar L (2011) Inorg Chem 50:1956–1972

    Article  CAS  PubMed  Google Scholar 

  11. Qin K, Yang DS, Yang Y, Chishti MA, Meng LJ, Kretzschmar HA, Yip CM, Fraser PE, Westaway D (2000) J Biol Chem 275:19121–19131

    Article  CAS  PubMed  Google Scholar 

  12. Cordeiro Y, Machado F, Juliano L, Juliano MA, Brentani RR, Foguel D, Silva JL (2001) J Biol Chem 276:49400–49409

    Article  CAS  PubMed  Google Scholar 

  13. Nandi PK, Leclerc E, Nicole JC, Takahashi M (2002) J Mol Biol 322:153–161

    Article  CAS  PubMed  Google Scholar 

  14. Deleault NR, Lucassen RW, Supattapone S (2003) Nature 425:717–720

    Article  CAS  PubMed  Google Scholar 

  15. Gomes MP, Cordeiro Y, Silva JL (2008) Prion 2:64–66

    Article  PubMed Central  PubMed  Google Scholar 

  16. Gomes MP, Millen TA, Ferreira PS, e Silva NL, Vieira TC, Almeida MS, Silva JL, Cordeiro Y (2008) J Biol Chem 283:19616–19625

    Google Scholar 

  17. Cavaliere P, Pagano B, Granata V, Prigent S, Rezaei H, Giancola C, Zagari A (2013) Nucleic Acids Res 41:327–339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Silva JL, Lima LM, Foguel D, Cordeiro Y (2008) Trends Biochem Sci 33:132–140

    Article  CAS  PubMed  Google Scholar 

  19. Silva JL, Gomes MP, Vieira TC, Cordeiro Y (2010) Front Biosci (Landmark Ed) 15:132–150

    Article  CAS  Google Scholar 

  20. Forloni G, Angeretti N, Chiesa R, Monzani E, Salmona M, Bugiani O, Tagliavini F (1993) Nature 362:543–546

    Article  CAS  PubMed  Google Scholar 

  21. Thellung S, Florio T, Corsaro A, Arena S, Merlino M, Salmona M, Tagliavini F, Bugiani O, Forloni G, Schettini G (2000) Int J Dev Neurosci 18:481–492

    Article  CAS  PubMed  Google Scholar 

  22. Jobling MF, Huang X, Stewart LR, Barnham KJ, Curtain C, Volitakis I, Perugini M, White AR, Cherny RA, Masters CL, Barrow CJ, Collins SJ, Bush AI, Cappai R (2001) Biochemistry 40:8073–8084

    Article  CAS  PubMed  Google Scholar 

  23. Turi I, Kallay C, Szikszai D, Pappalardo G, Di Natale G, De Bona P, Rizzarelli E, Sovago I (2010) J Inorg Biochem 104:885–891

    Article  CAS  PubMed  Google Scholar 

  24. Valensin D, Gajda K, Gralka E, Valensin G, Kamysz W, Kozlowski H (2010) J Inorg Biochem 104:71–78

    Article  CAS  PubMed  Google Scholar 

  25. Gaggelli E, Bernardi F, Molteni E, Pogni R, Valensin D, Valensin G, Remelli M, Luczkowski M, Kozlowski H (2005) J Am Chem Soc 127:996–1006

    Article  CAS  PubMed  Google Scholar 

  26. Zhang H, Kaneko K, Nguyen JT, Livshits TL, Baldwin MA, Cohen FE, James TL, Prusiner SB (1995) J Mol Biol 250:514–526

    Article  CAS  PubMed  Google Scholar 

  27. Liu H, Farr-Jones S, Ulyanov NB, Llinas M, Marqusee S, Groth D, Cohen FE, Prusiner SB, James TL (1999) Biochemistry 38:5362–5377

    Article  CAS  PubMed  Google Scholar 

  28. Cordeiro Y, Lima LM, Gomes MP, Foguel D, Silva JL (2004) J Biol Chem 279:5346–5352

    Article  CAS  PubMed  Google Scholar 

  29. Macedo B, Kaschula CH, Hunter R, Chaves JA, van der Merwe JD, Silva JL, Egan TJ, Cordeiro Y (2010) Eur J Med Chem 45:5468–5473

    Article  CAS  PubMed  Google Scholar 

  30. Nandi PK (1997) Arch Virol 142:2537–2545

    Article  CAS  PubMed  Google Scholar 

  31. Nandi PK (1998) Arch Virol 143:1251–1263

    Article  CAS  PubMed  Google Scholar 

  32. Lima LM, Cordeiro Y, Tinoco LW, Marques AF, Oliveira CL, Sampath S, Kodali R, Choi G, Foguel D, Torriani I, Caughey B, Silva JL (2006) Biochemistry 45:9180–9187

    Article  CAS  PubMed  Google Scholar 

  33. Marques AF, Cordeiro Y, Silva JL, Lima LM (2009) Biophys Chem 141:135–139

    Article  CAS  PubMed  Google Scholar 

  34. Macedo B, Millen TA, Braga CA, Gomes MP, Ferreira PS, Kraineva J, Winter R, Silva JL, Cordeiro Y (2012) Biochemistry 51:5402–5413

    Article  CAS  PubMed  Google Scholar 

  35. Daniele PG, Prenesti E, Ostacoli G (1996) J Chem Soc Dalton Trans 3269–3275. doi:10.1039/DT9960003269:3269-3275

    Google Scholar 

  36. Fawcett TG, Bernarducci EE, Krogh-Jespersen K, Schugar HJ (1980) J Am Chem Soc 102:2598–2604

    Article  CAS  Google Scholar 

  37. Bernarducci E, Schwindinger WF, Hughey JL, Krogh-Jespersen K, Schugar HJ (1981) J Am Chem Soc 103:1686–1691

    Article  CAS  Google Scholar 

  38. Peisach J, Blumberg WE (1974) Arch Biochem Biophys 165:691–708

    Article  CAS  PubMed  Google Scholar 

  39. Sakaguchi U, Addison AW (1979) J Chem Soc Dalton Trans 600 608. doi:10.1039/DT9790000600:600-608

    Google Scholar 

  40. Van Doorslaer S, Cereghetti GM, Glockshuber R, Schweiger A (2001) J Phys Chem B 105:1631–1639

    Article  Google Scholar 

  41. Miura T, Satoh T, Hori-i A, Takeuchi H (1998) J Raman Spectrosc 29:41–47

    Article  CAS  Google Scholar 

  42. Thomas GJ (1999) Annu Rev Biophys Biomol Struct 28:1–27

    Article  CAS  PubMed  Google Scholar 

  43. Bocharova OV, Breydo L, Salnikov VV, Baskakov IV (2005) Biochemistry 44:6776–6787

    Article  CAS  PubMed  Google Scholar 

  44. Lowe J, Vieyra A, Catty P, Guillain F, Mintz E, Cuillel M (2004) J Biol Chem 279:25986–25994

    Article  CAS  PubMed  Google Scholar 

  45. Mange A, Crozet C, Lehmann S, Beranger F (2004) J Cell Sci 117:2411–2416

    Article  CAS  PubMed  Google Scholar 

  46. Yin S, Fan X, Yu S, Li C, Sy MS (2008) J Biol Chem 283:25446–25454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Strom A, Wang GS, Picketts DJ, Reimer R, Stuke AW, Scott FW (2011) Eur J Cell Biol 90:414–419

    Article  CAS  PubMed  Google Scholar 

  48. Tajmir-Riahi HA, Naoui M, Ahmad R (1993) Biopolymers 33:1819–1827

    Article  CAS  PubMed  Google Scholar 

  49. Andrushchenko V, van de Sande JH, Wieser H (2003) Biopolymers 72:374–390

    Article  CAS  PubMed  Google Scholar 

  50. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Proc Natl Acad Sci USA 95:6448–6453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Reixach N, Deechongkit S, Jiang X, Kelly JW, Buxbaum JN (2004) Proc Natl Acad Sci USA 101:2817–2822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Huang Z, Prusiner SB, Cohen FE (1996) Fold Des 1:13–19

    Article  CAS  PubMed  Google Scholar 

  53. Gong B, Ramos A, Vazquez-Fernandez E, Silva CJ, Alonso J, Liu Z, Requena JR (2011) Biochemistry 50:4963–4972

    Article  CAS  PubMed  Google Scholar 

  54. Thakur AK, Srivastava AK, Srinivas V, Chary KV, Rao CM (2011) J Biol Chem 286:38533–38545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Quaglio E, Chiesa R, Harris DA (2001) J Biol Chem 276:11432–11438

    Article  CAS  PubMed  Google Scholar 

  56. Liu C, Zhang Y (2011) Adv Protein Chem Struct Biol 84:1–40

    Article  CAS  PubMed  Google Scholar 

  57. Vieira TC, Reynaldo DP, Gomes MP, Almeida MS, Cordeiro Y, Silva JL (2011) J Am Chem Soc 133:334–344

    Article  CAS  PubMed  Google Scholar 

  58. Harrison CF, Barnham KJ, Hill AF (2007) J Neurochem 103:1709–1720

    Article  CAS  PubMed  Google Scholar 

  59. Wu D, Zhang W, Luo Q, Luo K, Huang L, Wang W, Huang T, Chen R, Lin Y, Pang D, Xiao G (2010) J Cell Biochem 111:627–633

    Article  CAS  PubMed  Google Scholar 

  60. Liu M, Yu S, Yang J, Yin X, Zhao D (2007) Mol Cell Biochem 294:197–203

    Article  CAS  PubMed  Google Scholar 

  61. Surewicz WK, Apostol MI (2011) Top Curr Chem 305:135–167

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Icaro A. Marques for help with protein purification, Trinidad Arcos-Lopez and Jose Luis Esquivel for help with PrP109–112 synthesis and initial characterization, and Luis Mauricio T. R. Lima and Lina Rivillas-Acevedo for helpful discussions. We are very grateful to the Laboratório de Ultraestrutura Celular Hertha Meyer (Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro) and the Laboratório de Biologia Estrutural (Instituto Nacional de Metrologia, Rio de Janeiro) for use of the TEM facility. This work was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, and Consejo Nacional de Ciencia y Tecnología (grant 128255 to L.Q. and fellowship to C. S.-L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yraima Cordeiro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1461 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaves, J.A.P., Sanchez-López, C., Gomes, M.P.B. et al. Biophysical and morphological studies on the dual interaction of non-octarepeat prion protein peptides with copper and nucleic acids. J Biol Inorg Chem 19, 839–851 (2014). https://doi.org/10.1007/s00775-014-1115-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-014-1115-8

Keywords

Navigation