Skip to main content

Advertisement

Log in

Spectroscopic and metal-binding properties of DF3: an artificial protein able to accommodate different metal ions

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The design, synthesis, and metal-binding properties of DF3, a new de novo designed di-iron protein model are described (“DF” represents due ferri, Italian for “two iron,” “di-iron”). DF3 is the latest member of the DF family of synthetic proteins. They consist of helix–loop–helix hairpins, designed to dimerize and form an antiparallel four-helix bundle that encompasses a metal-binding site similar to those of non-heme carboxylate-bridged di-iron proteins. Unlike previous DF proteins, DF3 is highly soluble in water (up to 3 mM) and forms stable complexes with several metal ions (Zn, Co, and Mn), with the desired secondary structure and the expected stoichiometry of two ions per protein. UV–vis studies of Co(II) and Fe(III) complexes confirm a metal-binding environment similar to previous di-Co(II)- and di-Fe(III)-DF proteins, including the presence of a μ-oxo-di-Fe(III) unit. Interestingly, UV–vis, EPR, and resonance Raman studies suggest the interaction of a tyrosine adjacent to the di-Fe(III) center. The design of DF3 was aimed at increasing the accessibility of small molecules to the active site of the four-helix bundle. Indeed, binding of azide to the di-Fe(III) site demonstrates a more accessible metal site compared with previous DFs. In fact, fitting of the binding curve to the Hill equation allows us to quantify a 150% accessibility enhancement, with respect to DF2. All these results represent a significant step towards the development of a functional synthetic DF metalloprotein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

CD:

Circular dichroism

DF:

Due ferri

EPR:

Electron paramagnetic resonance

GdnHCl:

Guanidine hydrochloride

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

LMCT:

Ligand-to-metal charge transfer

PDB:

Protein Data Bank

RP-HPLC:

Reverse-phase high-performance liquid chromatography

TFA:

Trifluoroacetic acid

References

  1. Merkx M, Kopp DA, Sazinsky MH, Blazyk JL, Müller J, Lippard SJ (2001) Angew Chem Int Ed 40:2782–2807

    Article  CAS  Google Scholar 

  2. Kolberg M, Strand KR, Graff P, Kristoffer Andersson K (2004) Biochim Biophys Acta 1699:1–34

    PubMed  CAS  Google Scholar 

  3. Fox BG, Lyle KS, Rogge CE (2004) Acc Chem Res 37:421–429

    Article  PubMed  CAS  Google Scholar 

  4. Kurtz DM Jr (1997) J Biol Inorg Chem 2:159–167

    Article  CAS  Google Scholar 

  5. Guy JE, Abreu IA, Moche M, Lindqvist Y, Whittle E, Shanklin J (2006) Proc Natl Acad Sci USA 103:17220–17224

    Article  PubMed  CAS  Google Scholar 

  6. Macedo S, Romao CV, Mitchell E, Matias PM, Liu MY, Xavier AV, LeGall J, Teixeira M, Lindley P, Carrondo MA (2003) Nat Struct Mol Biol 10:285–290

    Article  CAS  Google Scholar 

  7. DeLano WL (2002) PyMOL. DeLano Scientific, Palo Alto

  8. Lombardi A, Summa CM, Geremia S, Randaccio L, Pavone V, DeGrado WF (2000) Proc Natl Acad Sci USA 97:6298–6305

    Article  PubMed  CAS  Google Scholar 

  9. Maglio O, Nastri F, Pavone V, Lombardi A, DeGrado WF (2003) Proc Natl Acad Sci USA 100:3772–3777

    Article  PubMed  CAS  Google Scholar 

  10. Di Costanzo L, Wade H, Geremia S, Randaccio L, Pavone V, DeGrado WF, Lombardi A (2001) J Am Chem Soc 123:12749–12757

    Article  PubMed  CAS  Google Scholar 

  11. DeGrado WF, Costanzo LD, Geremia S, Lombardi A, Pavone V, Randaccio L (2003) Angew Chem Int Ed Eng 42:417–420

    Article  CAS  Google Scholar 

  12. Pasternak A, Kaplan S, Lear JD, DeGrado WF (2001) Protein Sci 10:958–969

    Article  PubMed  CAS  Google Scholar 

  13. Calhoun JR, Nastri F, Maglio O, Pavone V, Lombardi A, DeGrado WF (2005) Biopolymers 80:264–278

    Article  PubMed  CAS  Google Scholar 

  14. Lahr SJ, Engel DE, Stayrook SE, Maglio O, North B, Geremia S, Lombardi A, DeGrado WF (2005) J Mol Biol 346:1441–1454

    Article  PubMed  CAS  Google Scholar 

  15. Maglio O, Nastri F, Calhoun JR, Lahr S, Wade H, Pavone V, DeGrado WF, Lombardi A (2005) J Biol Inorg Chem 10:539–549

    Article  PubMed  CAS  Google Scholar 

  16. Wade H, Stayrook SE, DeGrado WF (2006) Angew Chem Int Ed Eng 45:4951–4954

    Article  CAS  Google Scholar 

  17. Summa CM, Rosenblatt MM, Hong JK, Lear JD, DeGrado WF (2002) J Mol Biol 321:923–938

    Article  PubMed  CAS  Google Scholar 

  18. Marsh ENG, DeGrado WF (2002) Proc Natl Acad Sci USA 99:5150–5154

    Article  PubMed  CAS  Google Scholar 

  19. Kaplan J, DeGrado WF (2004) Proc Natl Acad Sci USA 101:11566–11570

    Article  PubMed  CAS  Google Scholar 

  20. Geremia S, Di Costanzo L, Randaccio L, Engel DE, Lombardi A, Nastri F, DeGrado WF (2005) J Am Chem Soc 127:17266–17276

    Article  PubMed  CAS  Google Scholar 

  21. Calhoun JR, Kono H, Lahr S, Wang W, DeGrado WF, Saven JG (2003) J Mol Biol 334:1101–1115

    Article  PubMed  CAS  Google Scholar 

  22. Wei PP, Skulan AJ, Wade H, DeGrado WF, Solomon EI (2005) J Am Chem Soc 127:16098–16106

    Article  PubMed  CAS  Google Scholar 

  23. Calhoun JR, Bell CB, Smith TJ, Thamann TJ, DeGrado WF, Solomon EI (2008) J Am Chem Soc 130:9188–9189

    Article  PubMed  CAS  Google Scholar 

  24. Maglio O, Nastri F, Torres Martin de Rosales R, Faiella M, Pavone V, DeGrado WF, Lombardi A (2007) C R Chimie 10:703–720

    CAS  Google Scholar 

  25. Bell CB, Calhoun JR, Bobyr E, Wei P-p, Hedman B, Hodgson KO, DeGrado WF, Solomon EI (2009) Biochemistry 48:59–73

    Article  PubMed  CAS  Google Scholar 

  26. Faiella M, Andreozzi C, Torres Martin de Rosales R, Pavone V, Maglio O, Flavia Nastri F, DeGrado WF, Lombardi A (2009) Nat Chem Biol 5:882–884

    Article  PubMed  CAS  Google Scholar 

  27. Gill SC, von Hippel PH (1989) Anal Biochem 182:319–326

    Article  PubMed  CAS  Google Scholar 

  28. Bolen DW, Santoro MM (1988) Biochemistry 27:8069–8074

    Article  PubMed  CAS  Google Scholar 

  29. Santoro MM, Bolen DW (1988) Biochemistry 27:8063–8068

    Article  PubMed  CAS  Google Scholar 

  30. Mann CJ, Matthews CR (1993) Biochemistry 32:5282–5290

    Article  PubMed  CAS  Google Scholar 

  31. Da Silva JJRF, Williams RJP (1991) The biological chemistry of the elements. Oxford University Press, Oxford

    Google Scholar 

  32. Dudev T, Lim C (2003) Chem Rev 103:773–787

    Article  PubMed  CAS  Google Scholar 

  33. Harding MM (2001) Acta Crystallogr D 57:401–411

    Article  PubMed  CAS  Google Scholar 

  34. Pearson RG (1963) J Am Chem Soc 85:3533–3539

    Article  CAS  Google Scholar 

  35. LeBrun NE, Keech AM, Mauk MR, Mauk AG, Andrews SC, Thomson AJ, Moore GR (1996) FEBS Lett 397:159–163

    Article  CAS  Google Scholar 

  36. Bertini I, Luchinat C (1984) Adv Inorg Biochem 6:71–111

    PubMed  CAS  Google Scholar 

  37. Frolow F, Kalb AJ, Yariv J (1994) Nat Struct Biol 1:453–460

    Article  PubMed  CAS  Google Scholar 

  38. Keech AM, LeBrun NE, Wilson MT, Andrews SC, Moore GR, Thomson AJ (1997) J Biol Chem 272:422–429

    Article  PubMed  CAS  Google Scholar 

  39. Bryson JW, Betz SF, Lu HS, Suich DJ, Zhou HXX, Oneil KT, DeGrado WF (1995) Science 270:935–941

    Article  PubMed  CAS  Google Scholar 

  40. Myers JK, Pace CN, Scholtz JM (1997) Biochemistry 36:10923–10929

    Article  PubMed  CAS  Google Scholar 

  41. Schellman JA (1987) Annu Rev Biophys Biophys Chem 16:115–137

    Article  PubMed  CAS  Google Scholar 

  42. Reem RC, McCormick JM, Richardson DE, Devlin FJ, Stephens PJ, Musselman RL, Solomon EI (1989) J Am Chem Soc 111:4688–4704

    Article  CAS  Google Scholar 

  43. Petersson L, Graslund A, Ehrenberg A, Sjoberg BM, Reichard P (1980) J Biol Chem 255:6706–6712

    PubMed  CAS  Google Scholar 

  44. Yang XO, Le Brun NE, Thomson AJ, Moore CR, Chasteen ND (2000) Biochemistry 39:4915–4923

    Article  PubMed  CAS  Google Scholar 

  45. Yang XK, Chen-Barrett Y, Arosio P, Chasteen ND (1998) Biochemistry 37:9743–9750

    Article  PubMed  CAS  Google Scholar 

  46. Fox BG, Shanklin J, Ai JY, Loehr TM, Sanders-Loehr J (1994) Biochemistry 33:12776–12786

    Article  PubMed  CAS  Google Scholar 

  47. Bollinger JM, Edmondson DE, Huynh BH, Filley J, Norton JR, Stubbe J (1991) Science 253:292–298

    Article  PubMed  CAS  Google Scholar 

  48. Gaber BP, Miskowski V, Spiro TG (1974) J Am Chem Soc 96:6868–6873

    Article  PubMed  CAS  Google Scholar 

  49. Que L Jr (1998) Biological applications of Raman spectroscopy. In: Spiro T (ed) Resonance Raman spectra of heme and metalloproteins, vol 3. Wiley, New York, pp. 491–521

  50. Aasa R, Malmstron BG, Saltman P, Vanngard T (1963) Biochim Biophys Acta 75:203–222

    Article  PubMed  CAS  Google Scholar 

  51. MacGillivray RTA, Moore SA, Chen J, Anderson BF, Baker H, Luo Y, Bewley M, Smith CA, Murphy MEP, Wang Y, Mason AB, Woodworth RC, Brayer GD, Baker EN (1998) Biochemistry 37:7919–7928

    Article  PubMed  CAS  Google Scholar 

  52. Tatsuno Y, Saeki Y, Iwaki M, Yagi T, Nozaki M, Kitagawa T, Otsuka S (1978) J Am Chem Soc 100:4614–4615

    Article  CAS  Google Scholar 

  53. Ohlendorf DH, Lipscomb JD, Weber PC (1988) Nature 336:403–405

    Article  PubMed  CAS  Google Scholar 

  54. Davis MI, Orville AM, Neese F, Zaleski JM, Lipscomb JD, Solomon EI (2002) J Am Chem Soc 124:602–614

    Article  PubMed  CAS  Google Scholar 

  55. Sträter N, Klabunde T, Tucker P, Witzel H, Krebs B (1995) Science 268:1489–1492

    Article  PubMed  Google Scholar 

  56. Wang Z, Ming LJ, Que L, Vincent JB, Crowder MW, Averill BA (1992) Biochemistry 31:5263–5268

    Article  PubMed  CAS  Google Scholar 

  57. Guddat LW, McAlpine AS, Hume D, Hamilton S, de Jersey J, Martin JL (1999) Structure 7:757–767

    Article  PubMed  CAS  Google Scholar 

  58. Gaber BP, Sheridan JP, Bazer FW, Roberts RM (1979) J Biol Chem 254:8340–8342

    Google Scholar 

  59. Que L Jr (1983) Coord Chem Rev 50:73–108

    Article  CAS  Google Scholar 

  60. Casella L, Gullotti M, Pintar A, Messori L, Rockenbauer A, Györ M (1987) Inorg Chem 26:1031–1038

    Article  CAS  Google Scholar 

  61. Pyrz JW, Roe AL, Stern LJ, Que L Jr (1985) J Am Chem Soc 107:614–620

    Article  CAS  Google Scholar 

  62. He Q-Y, Mason AB, Woodworth RC, Tam BM, MacGillivray RTA, Grady JK, Chasteen ND (1997) Biochemistry 36:14853–14860

    Article  PubMed  CAS  Google Scholar 

  63. Bull C, Ballou DP (1981) J Biol Chem 256:12673–12680

    PubMed  CAS  Google Scholar 

  64. Ainscough EW, Brodie AM, Plowman JE, Brown KL, Addison AW, Gainsford AR (1980) Inorg Chem 19:3655–3663

    Article  CAS  Google Scholar 

  65. Lauffer RB, Antanaitis BC, Aisen P, Que L Jr (1983) J Biol Chem 258:14212–14218

    PubMed  CAS  Google Scholar 

  66. Sharma KD, Andersson LA, Loehr TM, Terner J, Goff HM (1989) J Biol Chem 264:12772–12779

    PubMed  CAS  Google Scholar 

  67. Salama S, Stong JD, Neilands JB, Spiro TG (1978) Biochemistry 17:3781–3785

    Article  PubMed  CAS  Google Scholar 

  68. Meckelenburg SL, Mason AB, Woodworth RC, Donohoe RJ (1997) Biospectroscopy 3:435–444

    Article  Google Scholar 

  69. Fox BG, Shanklin J, Somerville C, Munck E (1993) Proc Natl Acad Sci USA 90:2486–2490

    Article  PubMed  CAS  Google Scholar 

  70. Garbett K, Darnall DW, Klotz IM, Williams RJP (1969) Arch Biochem Biophys 135:419–434

    Article  PubMed  CAS  Google Scholar 

  71. Stenkamp RE, Sieker LC, Jensen LH (1978) J Mol Biol 126:457–466

    Article  PubMed  CAS  Google Scholar 

  72. Holmes MA, Stenkamp RE (1991) J Mol Biol 220:723–737

    Article  PubMed  CAS  Google Scholar 

  73. Holmes MA, Le Trong I, Turley S, Sieker LC, Stenkamp RE (1991) J Mol Biol 218:583–593

    Article  PubMed  CAS  Google Scholar 

  74. Lindqvist Y, Huang W, Schneider G, Shanklin J (1996) EMBO J 15:4081–4092

    PubMed  CAS  Google Scholar 

  75. Hill AV (1910) J Physiol (Lond) 40:iv–vii

  76. England J, Davies CR, Banaru M, White AJP, Britovsek GJP (2008) Adv Synth Catal 350:883–897

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Marco Trifuoggi for metal content analysis. This work was supported by the European Commission (Marie Curie Fellowship HPMD-GH-01-00113-03 to R.T.M.R.), the US National Institutes of Health (Grant GM-38767 to L.Q. and graduate traineeship GM-08700 to E.F.), and the Italian MIUR (PRIN 2007, prot. 2007KAWXCL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Lombardi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres Martin de Rosales, R., Faiella, M., Farquhar, E. et al. Spectroscopic and metal-binding properties of DF3: an artificial protein able to accommodate different metal ions. J Biol Inorg Chem 15, 717–728 (2010). https://doi.org/10.1007/s00775-010-0639-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-010-0639-9

Keywords

Navigation