Skip to main content
Log in

Intra-articular injection of hUC-MSCs expressing miR-140-5p induces cartilage self-repairing in the rat osteoarthritis

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Introduction

Currently, osteoarthritis (OA) receives global increasing attention because it associates severe joint pain and serious disability. Stem cells intra-articular injection therapy showed a potential therapeutic superiority to reduce OA development and to improve treating outputs. However, the long-term effect of stem cells intra-articular injection on the cartilage regeneration remains unclear. Recently, miR-140-5p was confirmed as a critical positive regulator in chondrogenesis. We hypothesized that hUC-MSCs overexpressing miR-140-5p have better therapeutic effect on osteoarthritis.

Materials and methods

To enhance stem cell chondrogenic differentiation, we have transfected human umbilical cord mesenchymal stem cells (hUC-MSCs) with miR-140-5p mimics and miR-140-5p lentivirus to overexpress miR-140-5p in a short term or a long term accordingly. Thereafter, MSCs proliferation, chondrogenic genes expression and extracellular matrix were assessed. Destabilization of the medial meniscus (DMM) surgery was performed on the knee joints of SD rats as an OA model, and then intra-articular injection of hUC-MSCs or hUC-MSCs transfected with miR-140-5p lentivirus was carried to evaluate the cartilage healing effect with histological staining and OARSI scores. The localization of hUC-MSCs after intra-articular injection was further confirmed by immunohistochemical staining.

Results

Significant induction of chondrogenic differentiation in the miR-140-5p-hUC-MSCs (140-MSCs), while its proliferation was not influenced. Interestingly, intra-articular injection of 140-MSCs significantly enhanced articular cartilage self-repairing in comparison to normal hUC-MSCs. Moreover, we noticed that intra-articular injection of high 140-MSCs numbers reinforces cells assembling on the impaired cartilage surface and subsequently differentiated into chondrocytes.

Conclusions

In conclusion, these results indicate therapeutic superiority of hUC-MSCs overexpressing miR-140-5p to treat OA using intra-articular injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Woolf AD, Pfleger B (2003) Burden of major musculoskeletal conditions. Bull World Health Organ 81:646–656

    PubMed  PubMed Central  Google Scholar 

  2. Lohmander LS, Roos EM (2007) Clinical update: treating osteoarthritis. Lancet 370:2082–2084. https://doi.org/10.1016/S0140-6736(07)61879-0

    Article  PubMed  Google Scholar 

  3. Evans CH, Kraus VB, Setton LA (2014) Progress in intra-articular therapy. Nat Rev Rheumatol 10:11–22. https://doi.org/10.1038/nrrheum.2013.159

    Article  PubMed  CAS  Google Scholar 

  4. Skou ST, Roos EM, Laursen MB, Rathleff MS, Arendt-Nielsen L, Simonsen O, Rasmussen S (2015) A randomized, controlled trial of total knee replacement. New Engl J Med 373:1597–1606. https://doi.org/10.1056/NEJMoa1505467

    Article  PubMed  CAS  Google Scholar 

  5. Loeser RF, Collins JA, Diekman BO (2016) Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol 12:412–420. https://doi.org/10.1038/nrrheum.2016.65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  Google Scholar 

  7. Najar M, Raicevic G, Fayyad-Kazan H, Bron D, Toungouz M, Lagneaux L (2016) Mesenchymal stromal cells and immunomodulation: a gathering of regulatory immune cells. Cytotherapy 18:160–171. https://doi.org/10.1016/j.jcyt.2015.10.011

    Article  PubMed  CAS  Google Scholar 

  8. Najar M, Raicevic G, Fayyad-Kazan H, De Bruyn C, Bron D, Toungouz M, Lagneaux L (2012) Immune-related antigens, surface molecules and regulatory factors in human-derived mesenchymal stromal cells: the expression and impact of inflammatory priming. Stem Cell Rev 8:1188–1198. https://doi.org/10.1007/s12015-012-9408-1

    Article  CAS  Google Scholar 

  9. Singh JA (2012) Stem cells and other innovative intra-articular therapies for osteoarthritis: what does the future hold? BMC Med 10:44. https://doi.org/10.1186/1741-7015-10-44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Barry F, Murphy M (2013) Mesenchymal stem cells in joint disease and repair. Nat Rev Rheumatol 9:584–594. https://doi.org/10.1038/nrrheum.2013.109

    Article  PubMed  CAS  Google Scholar 

  11. Noth U, Steinert AF, Tuan RS (2008) Technology insight: adult mesenchymal stem cells for osteoarthritis therapy. Nat Clin Pract Rheumatol 4:371–380. https://doi.org/10.1038/ncprheum0816

    Article  PubMed  CAS  Google Scholar 

  12. Koga H, Shimaya M, Muneta T, Nimura A, Morito T, Hayashi M, Suzuki S, Ju YJ, Mochizuki T, Sekiya I (2008) Local adherent technique for transplanting mesenchymal stem cells as a potential treatment of cartilage defect. Arthritis Res Ther 10:R84. https://doi.org/10.1186/ar2460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Chang YH, Liu HW, Wu KC, Ding DC (2016) Mesenchymal stem cells and their clinical applications in osteoarthritis. Cell Transplant 25:937–950. https://doi.org/10.3727/096368915X690288

    Article  PubMed  Google Scholar 

  14. Ha CW, Park YB, Kim SH, Lee HJ (2019) Intra-articular mesenchymal stem cells in osteoarthritis of the knee: a systematic review of clinical outcomes and evidence of cartilage repair. Arthroscopy J Arthroscopic Relat Surg Off Publ Arthroscopy Assoc N Am Int Arthroscopy Assoc 35(277–88):e2. https://doi.org/10.1016/j.arthro.2018.07.028

    Article  Google Scholar 

  15. Bongso A, Fong CY (2013) The therapeutic potential, challenges and future clinical directions of stem cells from the Wharton’s jelly of the human umbilical cord. Stem Cell Rev 9:226–240. https://doi.org/10.1007/s12015-012-9418-z

    Article  CAS  Google Scholar 

  16. Troyer DL, Weiss ML (2008) Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells 26:591–599. https://doi.org/10.1634/stemcells.2007-0439

    Article  PubMed  Google Scholar 

  17. Ong SG, Lee WH, Kodo K, Wu JC (2015) MicroRNA-mediated regulation of differentiation and trans-differentiation in stem cells. Adv Drug Deliv Rev 88:3–15. https://doi.org/10.1016/j.addr.2015.04.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Shenoy A, Blelloch RH (2014) Regulation of microRNA function in somatic stem cell proliferation and differentiation. Nat Rev Mol Cell Biol 15:565–576. https://doi.org/10.1038/nrm3854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Shang J, Liu H, Zhou Y (2013) Roles of microRNAs in prenatal chondrogenesis, postnatal chondrogenesis and cartilage-related diseases. J Cell Mol Med 17:1515–1524. https://doi.org/10.1111/jcmm.12161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Gabay O, Clouse KA (2016) Epigenetics of cartilage diseases. Joint Bone Spine Revue du Rhum 83:491–494. https://doi.org/10.1016/j.jbspin.2015.10.004

    Article  CAS  Google Scholar 

  21. Zhang R, Ma J, Yao J (2013) Molecular mechanisms of the cartilage-specific microRNA-140 in osteoarthritis. Inflamm Res Off J Eur Histamine Res Soc [et al] 62:871–877. https://doi.org/10.1007/s00011-013-0654-8

    Article  CAS  Google Scholar 

  22. Karlsen TA, Jakobsen RB, Mikkelsen TS, Brinchmann JE (2014) microRNA-140 targets RALA and regulates chondrogenic differentiation of human mesenchymal stem cells by translational enhancement of SOX9 and ACAN. Stem Cells Dev 23:290–304. https://doi.org/10.1089/scd.2013.0209

    Article  PubMed  CAS  Google Scholar 

  23. Liang Y, Duan L, Xiong J, Zhu W, Liu Q, Wang D, Liu W, Li Z, Wang D (2016) E2 regulates MMP-13 via targeting miR-140 in IL-1beta-induced extracellular matrix degradation in human chondrocytes. Arthritis Res Ther 18:105. https://doi.org/10.1186/s13075-016-0997-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Karlsen TA, de Souza GA, Odegaard B, Engebretsen L, Brinchmann JE (2016) microRNA-140 inhibits inflammation and stimulates chondrogenesis in a model of interleukin 1beta-induced osteoarthritis. Mol Ther Nucleic Acids 5:e373. https://doi.org/10.1038/mtna.2016.64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Mastbergen SC, Saris DB, Lafeber FP (2013) Functional articular cartilage repair: here, near, or is the best approach not yet clear? Nat Rev Rheumatol 9:277–290. https://doi.org/10.1038/nrrheum.2013.29

    Article  PubMed  CAS  Google Scholar 

  26. ter Huurne M, Schelbergen R, Blattes R, Blom A, de Munter W, Grevers LC, Jeanson J, Noel D, Casteilla L, Jorgensen C, van den Berg W, van Lent PL (2012) Antiinflammatory and chondroprotective effects of intraarticular injection of adipose-derived stem cells in experimental osteoarthritis. Arthritis Rheum 64:3604–3613. https://doi.org/10.1002/art.34626

    Article  PubMed  CAS  Google Scholar 

  27. Shen W, Chen J, Zhu T, Yin Z, Chen X, Chen L, Fang Z, Heng BC, Ji J, Chen W, Ouyang HW (2013) Osteoarthritis prevention through meniscal regeneration induced by intra-articular injection of meniscus stem cells. Stem Cells Dev 22:2071–2082. https://doi.org/10.1089/scd.2012.0563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Wolfstadt JI, Cole BJ, Ogilvie-Harris DJ, Viswanathan S, Chahal J (2015) Current concepts: the role of mesenchymal stem cells in the management of knee osteoarthritis. Sports Health 7:38–44. https://doi.org/10.1177/1941738114529727

    Article  PubMed  PubMed Central  Google Scholar 

  29. Osborne H, Anderson L, Burt P, Young M, Gerrard D (2016) Australasian college of sports physicians-position statement: the place of mesenchymal stem/stromal cell therapies in sport and exercise medicine. Br J Sports Med 50:1237–1244. https://doi.org/10.1136/bjsports-2015-095711

    Article  PubMed  Google Scholar 

  30. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Norotte C (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313. https://doi.org/10.1016/j.stem.2008.07.003

    Article  PubMed  CAS  Google Scholar 

  31. Fischer J, Jahnen-Dechent W, Rosewick S, Knuchel R, Neuss S (2007) Isolation, characterization and spontaneous differentiation of human umbilical cord-derived mesenchymal stem cells. J Stem Cells Regen Med 2:121–122

    PubMed  CAS  Google Scholar 

  32. Kristjansson B, Limthongkul W, Yingsakmongkol W, Thantiworasit P, Jirathanathornnukul N, Honsawek S (2016) Isolation and characterization of human mesenchymal stem cells from facet joints and interspinous ligaments. Spine 41:E1–E7. https://doi.org/10.1097/BRS.0000000000001178

    Article  PubMed  Google Scholar 

  33. McGonagle D, Baboolal TG, Jones E (2017) Native joint-resident mesenchymal stem cells for cartilage repair in osteoarthritis. Nat Rev Rheumatol 13:719–730. https://doi.org/10.1038/nrrheum.2017.182

    Article  PubMed  CAS  Google Scholar 

  34. Jo CH, Chai JW, Jeong EC, Oh S, Shin JS, Shim H, Yoon KS (2017) Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a 2-year follow-up study. Am J Sports Med 45:2774–2783. https://doi.org/10.1177/0363546517716641

    Article  PubMed  Google Scholar 

  35. Agung M, Ochi M, Yanada S, Adachi N, Izuta Y, Yamasaki T, Toda K (2006) Mobilization of bone marrow-derived mesenchymal stem cells into the injured tissues after intraarticular injection and their contribution to tissue regeneration. Knee Surg Sports Traumatol Arthroscopy Off J ESSKA 14:1307–1314. https://doi.org/10.1007/s00167-006-0124-8

    Article  Google Scholar 

  36. Baksh D, Yao R, Tuan RS (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25:1384–1392. https://doi.org/10.1634/stemcells.2006-0709

    Article  PubMed  CAS  Google Scholar 

  37. Chen MY, Lie PC, Li ZL, Wei X (2009) Endothelial differentiation of Wharton’s jelly-derived mesenchymal stem cells in comparison with bone marrow-derived mesenchymal stem cells. Exp Hematol 37:629–640. https://doi.org/10.1016/j.exphem.2009.02.003

    Article  PubMed  CAS  Google Scholar 

  38. Fong CY, Chak LL, Biswas A, Tan JH, Gauthaman K, Chan WK, Bongso A (2011) Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev 7:1–16. https://doi.org/10.1007/s12015-010-9166-x

    Article  CAS  Google Scholar 

  39. Liu S, Hou KD, Yuan M, Peng J, Zhang L, Sui X, Zhao B, Xu W, Wang A, Lu S, Guo Q (2014) Characteristics of mesenchymal stem cells derived from Wharton’s jelly of human umbilical cord and for fabrication of non-scaffold tissue-engineered cartilage. J Biosci Bioeng 117:229–235. https://doi.org/10.1016/j.jbiosc.2013.07.001

    Article  PubMed  CAS  Google Scholar 

  40. Saulnier N, Viguier E, Perrier-Groult E, Chenu C, Pillet E, Roger T, Maddens S, Boulocher C (2015) Intra-articular administration of xenogeneic neonatal mesenchymal stromal cells early after meniscal injury down-regulates metalloproteinase gene expression in synovium and prevents cartilage degradation in a rabbit model of osteoarthritis. Osteoarthr Cartil 23:122–133. https://doi.org/10.1016/j.joca.2014.09.007

    Article  PubMed  CAS  Google Scholar 

  41. Matas J, Orrego M, Amenabar D, Infante C, Tapia-Limonchi R, Cadiz MI, Alcayaga-Miranda F, Gonzalez PL, Muse E, Khoury M, Figueroa FE, Espinoza F (2019) Umbilical cord-derived mesenchymal stromal cells (MSCs) for knee osteoarthritis: repeated MSC dosing is superior to a single MSC dose and to hyaluronic acid in a controlled randomized phase I/II trial. Stem Cells Transl Med 8:215–224. https://doi.org/10.1002/sctm.18-0053

    Article  PubMed  CAS  Google Scholar 

  42. Gibson G, Asahara H (2013) microRNAs and cartilage. J Orthopaedic Res Off Publ Orthop Res Soc 31:1333–1344. https://doi.org/10.1002/jor.22397

    Article  CAS  Google Scholar 

  43. Nugent M (2016) MicroRNAs: exploring new horizons in osteoarthritis. Osteoarthr Cartil 24:573–580. https://doi.org/10.1016/j.joca.2015.10.018

    Article  PubMed  CAS  Google Scholar 

  44. Miyaki S, Sato T, Inoue A, Otsuki S, Ito Y, Yokoyama S, Kato Y, Takemoto F, Nakasa T, Yamashita S, Takada S, Lotz MK, Ueno-Kudo H, Asahara H (2010) MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev 24:1173–1185. https://doi.org/10.1101/gad.1915510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Si HB, Zeng Y, Liu SY, Zhou ZK, Chen YN, Cheng JQ, Lu YR, Shen B (2017) Intra-articular injection of microRNA-140 (miRNA-140) alleviates osteoarthritis (OA) progression by modulating extracellular matrix (ECM) homeostasis in rats. Osteoarthr Cartil 25:1698–1707. https://doi.org/10.1016/j.joca.2017.06.002

    Article  PubMed  Google Scholar 

  46. Tao SC, Yuan T, Zhang YL, Yin WJ, Guo SC, Zhang CQ (2017) Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics 7:180–195. https://doi.org/10.7150/thno.17133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Horie M, Sekiya I, Muneta T, Ichinose S, Matsumoto K, Saito H, Murakami T, Kobayashi E (2009) Intra-articular Injected synovial stem cells differentiate into meniscal cells directly and promote meniscal regeneration without mobilization to distant organs in rat massive meniscal defect. Stem Cells 27:878–987

    Article  CAS  Google Scholar 

  48. Liu C, Teng ZQ, Santistevan NJ, Szulwach KE, Guo W, Jin P, Zhao X (2010) Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell 6:433–444. https://doi.org/10.1016/j.stem.2010.02.017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Reppel L, Margossian T, Yaghi L, Moreau P, Mercier N, Leger L, Hupont S, Stoltz JF, Bensoussan D, Huselstein C (2014) Hypoxic culture conditions for mesenchymal stromal/stem cells from Wharton’s jelly: a critical parameter to consider in a therapeutic context. Curr Stem Cell Res Ther 9:306–318

    Article  CAS  Google Scholar 

  50. Glasson SS, Blanchet TJ, Morris EA (2007) The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthr Cartil 15:1061–1069. https://doi.org/10.1016/j.joca.2007.03.006

    Article  PubMed  CAS  Google Scholar 

  51. Kamekura S, Hoshi K, Shimoaka T, Chung U, Chikuda H, Yamada T, Uchida M, Ogata N, Seichi A, Nakamura K, Kawaguchi H (2005) Osteoarthritis development in novel experimental mouse models induced by knee joint instability. Osteoarthr Cartil 13:632–641. https://doi.org/10.1016/j.joca.2005.03.004

    Article  PubMed  CAS  Google Scholar 

  52. Pritzker KP, Gay S, Jimenez SA, Ostergaard K, Pelletier JP, Revell PA, Salter D, van den Berg WB (2006) Osteoarthritis cartilage histopathology: grading and staging. Osteoarthr Cartil 14:13–29. https://doi.org/10.1016/j.joca.2005.07.014

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ling Wei and Hancheng Zhang for technical help on qPCR and immunohistochemical staining.

Funding

This work was funded by National Natural Science Foundation of China (Nos. 81572198; 81772394); Key Program of Natural Science Foundation of Guangdong Province (No. 2018B0303110003); Shenzhen Peacock Project (KQTD20170331100838136); Shenzhen Science and Technology Projects (Nos. JCYJ20170817172023838; JCYJ20170306092215436; JCYJ20170412150609690; JCYJ20170413161649437; JCYJ20170413161800287; SGLH20161209105517753; JCYJ20160301111338144); Fund for High Level Medical Discipline Construction of Shenzhen University (No. 2016031638). Natural Science Foundation of Guangdong Province (2019A1515011108); Shenzhen Science and Technology Project (GJHZ20180416164801042, JCYJ20160226192924528), Shenzhen Double Chain Project for Innovation and Development Industry supported by Bureau of Industry and Information Technology of Shenzhen (201806081524201510).

Author information

Authors and Affiliations

Authors

Contributions

YG and DW designed the experiments; YG and JC conducted of the animal experiments; YG and CC conducted part of the cell experiments; WZ, JX and MW supervised the animal experiments; YG, LD and MA analyzed the results and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Daping Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 141 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, Y., Chen, J., Alahdal, M. et al. Intra-articular injection of hUC-MSCs expressing miR-140-5p induces cartilage self-repairing in the rat osteoarthritis. J Bone Miner Metab 38, 277–288 (2020). https://doi.org/10.1007/s00774-019-01055-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-019-01055-3

Keywords

Navigation