Skip to main content
Log in

Strontium ranelate: in search for the mechanism of action

  • Review Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Strontium ranelate is a medicine with evidenced effects on the risk of fractures. The heterogeneity of strontium distribution in bone, quality of bone mineral crystals in young bone packets on bone surfaces formed during strontium ranelate administration, and activation of the calcium sensing receptor may, at least partially, explain the beneficial effects of SrR on reducing the risk of fractures. In this review, the concept of the dual action of strontium ranelate is also discussed. However, sufficient evidence for the bone anabolic effect of SrR does not exist in humans. The knowledge of the mechanism of action of SrR is important not only for the explanation of the effects of SrR upon the skeleton, but also for the safety of treatment for other tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, Cannata J, Balogh A, Lemmel EM, Pors Nielsen S, Rizzoli R, Genant HK, Reginster JY (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350:459–468

    Article  PubMed  CAS  Google Scholar 

  2. Reginster JY, Seeman E, De Vernejoul MC, Adami S, Compston J, Phenekos C, Devogelaer JP, Curiel MD, Sawicki A, Goemaere S, Sorensen OH, Felsenberg D, Meunier PJ (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: treatment of Peripheral Osteoporosis (TROPOS) study. J Clin Endocrinol Metab 90:2816–2822

    Article  PubMed  CAS  Google Scholar 

  3. Reginster JY, Kaufman JM, Goemaere S, Devogelaer JP, Benhamou CL, Felsenberg D, Diaz-Curiel M, Brandi ML, Badurski J, Wark J, Balogh A, Bruyere O, Roux C (2012) Maintenance of antifracture efficacy over 10 years with strontium ranelate in postmenopausal osteoporosis. Osteoporos Int 23:1115–1122

    Article  PubMed  CAS  Google Scholar 

  4. Seeman E, Boonen S, Borgstrom F, Vellas B, Aquino JP, Semler J, Benhamou CL, Kaufman JM, Reginster JY (2010) Five years treatment with strontium ranelate reduces vertebral and nonvertebral fractures and increases the number and quality of remaining life-years in women over 80 years of age. Bone 46:1038–1042

    Article  PubMed  CAS  Google Scholar 

  5. Bruyere O, Roux C, Detilleux J, Slosman DO, Spector TD, Fardellone P, Brixen K, Devogelaer JP, Diaz-Curiel M, Albanese C, Kaufman JM, Pors-Nielsen S, Reginster JY (2007) Relationship between bone mineral density changes and fracture risk reduction in patients treated with strontium ranelate. J Clin Endocrinol Metab 92:3076–3081

    Article  PubMed  CAS  Google Scholar 

  6. Kaufman JM, Audran M, Bianchi G, Braga V, Diaz-Curiel M, Francis RM, Goemaere S, Josse R, Palacios S, Ringe JD, Felsenberg D, Boonen S (2013) Efficacy and safety of strontium ranelate in the treatment of osteoporosis in men. J Clin Endocrinol Metab 98:592–601

    Article  PubMed  CAS  Google Scholar 

  7. Blake GM, Fogelman I (2005) Long-term effect of strontium ranelate treatment on BMD. J Bone Miner Res 20:1901–1904

    Article  PubMed  CAS  Google Scholar 

  8. Nielsen SP, Slosman D, Sorensen OH, Basse-Cathalinat B, De Cassin P, Roux CR, Meunier PJ (1999) Influence of strontium on bone mineral density and bone mineral content measurements by dual X-ray absorptiometry. J Clin Densitom 2:371–379

    Article  PubMed  CAS  Google Scholar 

  9. Roschger P, Manjubala I, Zoeger N, Meirer F, Simon R, Li C, Fratzl-Zelman N, Misof BM, Paschalis EP, Streli C, Fratzl P, Klaushofer K (2010) Bone material quality in transiliac bone biopsies of postmenopausal osteoporotic women after 3 years of strontium ranelate treatment. J Bone Miner Res 25:891–900

    Article  PubMed  Google Scholar 

  10. Fuchs RK, Allen MR, Condon KW, Reinwald S, Miller LM, McClenathan D, Keck B, Phipps RJ, Burr DB (2008) Strontium ranelate does not stimulate bone formation in ovariectomized rats. Osteoporos Int 19:1331–1341

    Article  PubMed  CAS  Google Scholar 

  11. Dahl SG, Allain P, Marie PJ, Mauras Y, Boivin G, Ammann P, Tsouderos Y, Delmas PD, Christiansen C (2001) Incorporation and distribution of strontium in bone. Bone 28:446–453

    Article  PubMed  CAS  Google Scholar 

  12. Oliveira JP, Querido W, Caldas RJ, Campos AP, Abracado LG, Farina M (2012) Strontium is incorporated in different levels into bones and teeth of rats treated with strontium ranelate. Calcif Tissue Int 91:186–195

    Article  PubMed  CAS  Google Scholar 

  13. Barenholdt O, Kolthoff N, Nielsen SP (2009) Effect of long-term treatment with strontium ranelate on bone strontium content. Bone 45:200–206

    Article  PubMed  Google Scholar 

  14. Boivin G, Farlay D, Khebbab MT, Jaurand X, Delmas PD, Meunier PJ (2010) In osteoporotic women treated with strontium ranelate, strontium is located in bone formed during treatment with a maintained degree of mineralization. Osteoporos Int 21:667–677

    Article  PubMed  CAS  Google Scholar 

  15. Boivin G, Deloffre P, Perrat B, Panczer G, Boudeulle M, Mauras Y, Allain P, Tsouderos Y, Meunier PJ (1996) Strontium distribution and interactions with bone mineral in monkey iliac bone after strontium salt (S 12911) administration. J Bone Miner Res 11:1302–1311

    Article  PubMed  CAS  Google Scholar 

  16. Rizzoli R, Laroche M, Krieg MA, Frieling I, Thomas T, Delmas P, Felsenberg D (2010) Strontium ranelate and alendronate have differing effects on distal tibia bone microstructure in women with osteoporosis. Rheumatol Int 30:1341–1348

    Article  PubMed  CAS  Google Scholar 

  17. Yerramshetty JS, Akkus O (2008) The associations between mineral crystallinity and the mechanical properties of human cortical bone. Bone 42:476–482

    Article  PubMed  CAS  Google Scholar 

  18. Ishimoto T, Nakano T, Umakoshi Y, Yamamoto M, Tabata Y (2013) Degree of biological apatite c-axis orientation rather than bone mineral density controls mechanical function in bone regenerated using recombinant bone morphogenetic protein-2. J Bone Miner Res 28:1170–1179

    Article  PubMed  CAS  Google Scholar 

  19. Gourion-Arsiquaud S, Lukashova L, Power J, Loveridge N, Reeve J, Boskey AL (2013) Fourier transform infrared imaging of femoral neck bone: reduced heterogeneity of mineral-to-matrix and carbonate-to-phosphate and more variable crystallinity in treatment-naive fracture cases compared with fracture-free controls. J Bone Miner Res 28:150–161

    Article  PubMed  CAS  Google Scholar 

  20. Ammann P, Badoud I, Barraud S, Dayer R, Rizzoli R (2007) Strontium ranelate treatment improves trabecular and cortical intrinsic bone tissue quality, a determinant of bone strength. J Bone Miner Res 22:1419–1425

    Article  PubMed  CAS  Google Scholar 

  21. Rizzoli R, Chapurlat RD, Laroche JM, Krieg MA, Thomas T, Frieling I, Boutroy S, Laib A, Bock O, Felsenberg D (2012) Effects of strontium ranelate and alendronate on bone microstructure in women with osteoporosis. Results of a 2-year study. Osteoporos Int 23:305–315

    Article  PubMed  CAS  Google Scholar 

  22. Bonnelye E, Chabadel A, Saltel F, Jurdic P (2008) Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone 42:129–138

    Article  PubMed  CAS  Google Scholar 

  23. Atkins GJ, Welldon KJ, Halbout P, Findlay DM (2009) Strontium ranelate treatment of human primary osteoblasts promotes an osteocyte-like phenotype while eliciting an osteoprotegerin response. Osteoporos Int 20:653–664

    Article  PubMed  CAS  Google Scholar 

  24. Bakker AD, Zandieh-Doulabi B, Klein-Nulend J (2013) Strontium Ranelate affects signaling from mechanically-stimulated osteocytes towards osteoclasts and osteoblasts. Bone 53:112–119

    Article  PubMed  CAS  Google Scholar 

  25. Ammann P, Shen V, Robin B, Mauras Y, Bonjour JP, Rizzoli R (2004) Strontium ranelate improves bone resistance by increasing bone mass and improving architecture in intact female rats. J Bone Miner Res 19:2012–2020

    Article  PubMed  CAS  Google Scholar 

  26. Marie PJ, Hott M, Modrowski D, De Pollak C, Guillemain J, Deloffre P, Tsouderos Y (1993) An uncoupling agent containing strontium prevents bone loss by depressing bone resorption and maintaining bone formation in estrogen-deficient rats. J Bone Miner Res 8:607–615

    Article  PubMed  CAS  Google Scholar 

  27. Bruel A, Vegger JB, Raffalt AC, Andersen JE, Thomsen JS (2013) PTH (1-34), but not strontium ranelate counteract loss of trabecular thickness and bone strength in disuse osteopenic rats. Bone 53:51–58

    Article  PubMed  CAS  Google Scholar 

  28. Arlot ME, Jiang Y, Genant HK, Zhao J, Burt-Pichat B, Roux JP, Delmas PD, Meunier PJ (2008) Histomorphometric and microCT analysis of bone biopsies from postmenopausal osteoporotic women treated with strontium ranelate. J Bone Miner Res 23:215–222

    Article  PubMed  CAS  Google Scholar 

  29. Recker R, Masarachia P, Santora A, Howard T, Chavassieux P, Arlot M, Rodan G, Wehren L, Kimmel D (2005) Trabecular bone microarchitecture after alendronate treatment of osteoporotic women. Curr Med Res Opin 21:185–194

    Article  PubMed  CAS  Google Scholar 

  30. Recker RR, Delmas PD, Halse J, Reid IR, Boonen S, Garcia-Hernandez PA, Supronik J, Lewiecki EM, Ochoa L, Miller P, Hu H, Mesenbrink P, Hartl F, Gasser J, Eriksen EF (2008) Effects of intravenous zoledronic acid once yearly on bone remodeling and bone structure. J Bone Miner Res 23:6–16

    Article  PubMed  CAS  Google Scholar 

  31. Marie PJ, Felsenberg D, Brandi ML (2011) How strontium ranelate, via opposite effects on bone resorption and formation, prevents osteoporosis. Osteoporos Int 22:1659–1667

    Article  PubMed  CAS  Google Scholar 

  32. Hara T, Tanck E, Homminga J, Huiskes R (2002) The influence of microcomputed tomography threshold variations on the assessment of structural and mechanical trabecular bone properties. Bone 31:107–109

    Article  PubMed  CAS  Google Scholar 

  33. Ma YL, Marin F, Stepan J, Ish-Shalom S, Moricke R, Hawkins F, Kapetanos G, de la Pena MP, Kekow J, Martinez G, Malouf J, Zeng QQ, Wan X, Recker RR (2011) Comparative effects of teriparatide and strontium ranelate in the periosteum of iliac crest biopsies in postmenopausal women with osteoporosis. Bone 48:972–978

    Article  PubMed  CAS  Google Scholar 

  34. Busse B, Jobke B, Hahn M, Priemel M, Niecke M, Seitz S, Zustin J, Semler J, Amling M (2010) Effects of strontium ranelate administration on bisphosphonate-altered hydroxyapatite: matrix incorporation of strontium is accompanied by changes in mineralization and microstructure. Acta Biomater 6:4513–4521

    Article  PubMed  CAS  Google Scholar 

  35. Recker RR, Bare SP, Smith SY, Varela A, Miller MA, Morris SA, Fox J (2009) Cancellous and cortical bone architecture and turnover at the iliac crest of postmenopausal osteoporotic women treated with parathyroid hormone 1-84. Bone 44:113–119

    Article  PubMed  CAS  Google Scholar 

  36. Michalska D, Stepan JJ, Basson BR, Pavo I (2006) The effect of raloxifene after discontinuation of long-term alendronate treatment of postmenopausal osteoporosis. J Clin Endocrinol Metab 91:870–877

    Article  PubMed  CAS  Google Scholar 

  37. Chavassieux P, Brixen K, Zerbini C, Pereira R, De La Peňa P, Valter I, Hala T, Novosad P, Zanchetta J, Man Z, Ste-Marie LG, Meunier PJ, Chapurlat R (2011) Bone formation is significantly greater in women on strontium ranelate than in those on alendronate after 6 and 12 months of treatment: histomorphometric analysis from a large randomized controlled trial. Osteoporos Int 22(Suppl 1):S104

    Google Scholar 

  38. Vasikaran S, Cooper C, Eastell R, Griesmacher A, Morris HA, Trenti T, Kanis JA (2011) International Osteoporosis Foundation and International Federation of Clinical Chemistry and Laboratory Medicine position on bone marker standards in osteoporosis. Clin Chem Lab Med 49:1271–1274

    Article  PubMed  CAS  Google Scholar 

  39. Millan JL (2012) The Role of Phosphatases in the Initiation of Skeletal Mineralization. Calcif Tissue Int. doi:10.1007/s00223-012-9672-8

    PubMed  Google Scholar 

  40. Stepan JJ, Burr DB, Li J, Ma YL, Petto H, Sipos A, Dobnig H, Fahrleitner-Pammer A, Michalska D, Pavo I (2010) Histomorphometric changes by teriparatide in alendronate-pretreated women with osteoporosis. Osteoporos Int 21:2027–2036

    Article  PubMed  CAS  Google Scholar 

  41. Recker RR, Marin F, Ish-Shalom S, Moricke R, Hawkins F, Kapetanos G, de la Pena MP, Kekow J, Farrerons J, Sanz B, Oertel H, Stepan J (2009) Comparative effects of teriparatide and strontium ranelate on bone biopsies and biochemical markers of bone turnover in postmenopausal women with osteoporosis. J Bone Miner Res 24:1358–1368

    Article  PubMed  CAS  Google Scholar 

  42. Anastasilakis AD, Goulis DG, Polyzos SA, Gerou S, Ballaouri I, Efstathiadou Z, Kita M, Avramidis A (2009) No difference between strontium ranelate (SR) and calcium/vitamin D on bone turnover markers in women with established osteoporosis previously treated with teriparatide: a randomized controlled trial. Clin Endocrinol (Oxf) 70:522–526

    Article  CAS  Google Scholar 

  43. Seeman E, Delmas PD, Hanley DA, Sellmeyer D, Cheung AM, Shane E, Kearns A, Thomas T, Boyd SK, Boutroy S, Bogado C, Majumdar S, Fan M, Libanati C, Zanchetta J (2010) Microarchitectural deterioration of cortical and trabecular bone: differing effects of denosumab and alendronate. J Bone Miner Res 25:1886–1894

    Article  PubMed  Google Scholar 

  44. Quesada-Gomez JM, Muschitz C, Gomez-Reino J, Greisen H, Andersen HS, Dimai HP (2011) The effect of PTH(1-84) or strontium ranelate on bone formation markers in postmenopausal women with primary osteoporosis: results of a randomized, open-label clinical trial. Osteoporos Int 22:2529–2537

    Article  PubMed  CAS  Google Scholar 

  45. Brown EM (2003) Is the calcium receptor a molecular target for the actions of strontium on bone? Osteoporos Int 14(Suppl 3):S25–S34

    PubMed  CAS  Google Scholar 

  46. Hurtel-Lemaire AS, Mentaverri R, Caudrillier A, Cournarie F, Wattel A, Kamel S, Terwilliger EF, Brown EM, Brazier M (2009) The calcium-sensing receptor is involved in strontium ranelate-induced osteoclast apoptosis. New insights into the associated signaling pathways. J Biol Chem 284:575–584

    Article  PubMed  CAS  Google Scholar 

  47. Caudrillier A, Hurtel-Lemaire AS, Wattel A, Cournarie F, Godin C, Petit L, Petit JP, Terwilliger E, Kamel S, Brown EM, Mentaverri R, Brazier M (2010) Strontium ranelate decreases receptor activator of nuclear factor-KappaB ligand-induced osteoclastic differentiation in vitro: involvement of the calcium-sensing receptor. Mol Pharmacol 78:569–576

    Article  PubMed  CAS  Google Scholar 

  48. Marie PJ (2010) The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis. Bone 46:571–576

    Article  PubMed  CAS  Google Scholar 

  49. Egbuna OI, Brown EM (2008) Hypercalcaemic and hypocalcaemic conditions due to calcium-sensing receptor mutations. Best Pract Res Clin Rheumatol 22:129–148

    Article  PubMed  CAS  Google Scholar 

  50. Riccardi D, Kemp PJ (2012) The calcium-sensing receptor beyond extracellular calcium homeostasis: conception, development, adult physiology, and disease. Annu Rev Physiol 74:271–297

    Article  PubMed  CAS  Google Scholar 

  51. Maresova KB, Franek T, Vondracek T, Stepan JJ (2012) A comparison of the acute effects of calcium and strontium ranelate on the serum marker of bone resorption. Clin Chem Lab Med 50:333–335

    Article  CAS  Google Scholar 

  52. Carnevale V, Del Fiacco R, Romagnoli E, Fontana A, Cipriani C, Pepe J, Minisola S (2013) Effects of strontium ranelate administration on calcium metabolism in female patients with postmenopausal osteoporosis and primary hyperparathyroidism. Calcif Tissue Int 92:15–22

    Article  PubMed  CAS  Google Scholar 

  53. Prentice RL, Pettinger MB, Jackson RD, Wactawski-Wende J, Lacroix AZ, Anderson GL, Chlebowski RT, Manson JE, Van Horn L, Vitolins MZ, Datta M, Leblanc ES, Cauley JA, Rossouw JE (2013) Health risks and benefits from calcium and vitamin D supplementation: women’s Health Initiative clinical trial and cohort study. Osteoporos Int 24:567–580

    Article  PubMed  CAS  Google Scholar 

  54. Cacoub P, Descamps V, Meyer O, Speirs C, Belissa-Mathiot P, Musette P (2013) Drug rash with eosinophilia and systemic symptoms (DRESS) in patients receiving strontium ranelate. Osteoporos Int 24:1751–1757

    Article  PubMed  CAS  Google Scholar 

  55. Jonville-Bera AP, Autret-Leca E (2011) Adverse drug reactions of strontium ranelate(Protelos((R)) in France. Presse Med 40:e453–e462

    Article  PubMed  Google Scholar 

  56. European Medicines Agency (2013) Recommendation to restrict the use of Protelos/Osseor (strontium ranelate). http://www.ema.europa.eu/docs/en_GB/document_library/Press_release/2013/04/WC500142507.pdf

Download references

Conflict of interest

The author has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan J. Stepan.

About this article

Cite this article

Stepan, J.J. Strontium ranelate: in search for the mechanism of action. J Bone Miner Metab 31, 606–612 (2013). https://doi.org/10.1007/s00774-013-0494-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-013-0494-1

Keywords

Navigation