Skip to main content

Advertisement

Log in

Characterization of structural and functional role of selenocysteine in selenoprotein H and its impact on DNA binding

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Selenoproteins are a group of proteins which contain selenocysteine (Sec or U) in their primary structure. Selenoproteins play a critical role in antioxidant defense, hormone metabolism, immune responses and muscle development. The selenoprotein H (SELENOH) is essential in the regulation of gene expression in response to redox status and antioxidant defense. It has Sec residue located in conserved CXXU motif similar to other selenoproteins. However, exact biological function of Sec residue in SELENOH is not known in detail. Therefore, it is essential to understand the structural and functional role of Sec in SELENOH. In the present study, homology modelling and MD simulation were performed to understand the role of Sec residue in SELENOH. The modelled 3D structure of wild-SELENOH along with two mutants (Mut-U44C and Mut-41CS–SC44) was subjected to MD simulation. Based on simulation results, we demonstrate that wild-SELENOH structure is dynamically stabilized by network of intramolecular hydrogen bonding and internal residue contacts facilitated by Sec residue. In contrast, notable differences have been observed in residue contacts and stability in other two mutant structures. Additionally, docking studies revealed that 3PRGRKRK9 motif of wild-SELENOH interacts with HSE and STRE of DNA molecule as observed experimentally. Similar to earlier reports, our sequence analysis study pinpoints conserved 3PRGRKRK9 motif present in SELENOH perform dual role as AT-hook motif and NLS. Overall, the obtained results clearly illustrate Sec residue plays an important role to restore functionally active conformation of SELENOH. The present study broadened our current understanding regarding the role of selenocysteine in protein structure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ali ST, Jahangir S, Karamat S, Fabian WMF, Nawara K, Kona J (2010) Theoretical study on the redox cycle of bovine glutathione peroxidase GPx1: pKa calculations, docking, and molecular dynamics simulations. J Chem Theory Comput 6:1670–1681

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amitai G, Shemesh A, Sitbon E, Shklar M, Netanely D, Venger I, Pietrokovski S (2004) Network analysis of protein structures identifies functional residues. J Mol Biol 344:1135–1146

    Article  CAS  PubMed  Google Scholar 

  • Beld J, Woycechowsky KJ, Hilvert D (2010) Diselenides as universal oxidative folding catalysts of diverse proteins. J Biotechnol 150:481–489

    Article  CAS  PubMed  Google Scholar 

  • Bellinger FP, Raman AV, Reeves MA, Berry MJ (2009) Regulation and function of selenoproteins in human disease. Biochem J 422:11–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinda KV, Vishveshwara S (2005) A Network representation of protein structures: implications for protein stability. Biophys J 89:4159–4170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chivers PT, Laboissiere MC, Raines RT (1996) The CXXC motif: imperatives for the formation of native disulfide bonds in the cell. EMBO J 15:2659–2667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darabi F, Hadadzadeh H, Ebrahimi M, Khayamian T, Rudbari HA (2014) The piroxicam complex of cobalt(II): synthesis in two different ionic liquids, structure, DNA- and BSA interaction and molecular modelling. Inorg Chim Acta 409:379–389

    Article  CAS  Google Scholar 

  • Dassault Systèmes BIOVIA (2016) Discovery Studio, v17.1.0.16143, San Diego: Dassault Systèmes

  • Daura X, Gademann K, Jaun B, Seebach D, Gunsteren W, Mark A (1999) Peptide folding: when simulation meets experiment. Angew Chem Int Ed 38:236–240

    Article  CAS  Google Scholar 

  • Dikiy AA, Novoselov SV, Fomenko DE, Sengupta A, Carlson BA, Cerny RL, Ginalski K, Grishin NV, Hatfield DL, Gladyshev VN (2007) SelT, SelW, SELENOH, and Rdx12: genomics and molecular insights into the functions of selenoproteins of a novel thioredoxin-like family. Biochemistry 46:6871–6882

    Article  CAS  PubMed  Google Scholar 

  • Dokudovskaya S, Waharte F, Schlessinger A, Pieper U, Devos DP, Cristea IM, Williams R, Salamero J, Chait BT, Sali A, Field MC, Rout MP, Dargemont C (2011) A Conserved coatomer-related complex containing Sec13 and Seh1 dynamically associates with the vacuole in Saccharomyces Cerevisiae. Mol Cell Proteom 10(M110):006478. https://doi.org/10.1074/mcp.m110.006478

    Google Scholar 

  • Epp O, Ladenstein R, Wendel A (1983) The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. Eur J Biochem 133:51–69

    Article  CAS  PubMed  Google Scholar 

  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  • Ferguson AD, Labunskyy VM, Fomenko DE, Arac D, Chelliah Y, Amezcua CA, Rizo J, Gladyshev VN, Deisenhofer J (2006) NMR structures of the selenoproteins Sep15 and SelM reveal redox activity of a new thioredoxin-like family. J Biol Chem 281:3536–3543

    Article  CAS  PubMed  Google Scholar 

  • Fiori S, Pegoraro S, Rudolph-Böhner S, Cramer J, Moroder L (2000) Synthesis and conformational analysis of apamin analogues with natural and non-natural cystine/selenocystine connectivities. Biopolymers 53:550–564

    Article  CAS  PubMed  Google Scholar 

  • Fischer D, Eisenberg D (1996) Protein fold recognition using sequence-derived predictions. Protein Sci 5:947–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flohe L (1989) In g1utathione: chemical, biochemical and medical aspects. In: Poulson R, Avamovie O, Dolphin D (eds) Cell Biochemistry and function. Wiley, New York, pp 644–731

    Google Scholar 

  • Gladyshev VN, Arnér ES, Berry MJ, Brigelius-Flohé R, Bruford EA, Burk RF, Carlson BA, Castellano S, Chavatte L, Conrad M (2016) Selenoprotein gene nomenclature. J Biol Chem 291:24036–24040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatfield DL, Berry MJ, Gladyshev VN (2006) Selenium: its molecular biology and role in human health, 2nd edn. Springer, New York, pp 3–287

    Book  Google Scholar 

  • Hess B (2008) P-LINCS: a parallel linear constraint solver for molecular simulation. J Chem Theor Comput 4:116–122

    Article  CAS  Google Scholar 

  • House KL, Dunlap RB, Odom JD, Wu ZP, Hilvert D (1992) Structural characterization of selenosubtilisin by selenium-77 NMR spectroscopy. J Am Chem Soc 114:8573–8579

    Article  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Gr 14:33–38

    Article  CAS  Google Scholar 

  • Jones DT, Taylort WR, Thornton JM (1992) A new approach to protein fold recognition. Nature 358:86–89

    Article  CAS  PubMed  Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  CAS  PubMed  Google Scholar 

  • Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105:6474–6487

    Article  CAS  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Gladyshev R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300:1439–1443

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK—a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  • Lee S-R, Bar-Noy S, Kwon J, Levine RL, Stadtman TC, Rhee SG (2000) Mammalian thioredoxin reductase: oxidation of the C-terminal cysteine/selenocysteine active site forms a thioselenide, and replacement of selenium with sulfur markedly reduces catalytic activity. Proc Natl Acad Sci USA 97:2521–2526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobley A, Sadowski MI, Jones DT (2009) pGenTHREADER and pDomTHREADER: new methods for improved protein fold recognition and superfamily discrimination. Bioinformatics 25:1761–1767

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Holmgren A (2009) Selenoproteins. J Biol Chem 284:723–727

    Article  CAS  PubMed  Google Scholar 

  • Martin-Romero FJ, Kryukov GV, Lobanov AV, Carlson BA, Lee BJ, Gladyshev VN, Hatfield DL (2001) Selenium metabolism in Drosophila selenoproteins, selenoprotein mRNA expression, fertility, and mortality. J Biol Chem 276:29798–29804

    Article  CAS  PubMed  Google Scholar 

  • McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405

    Article  CAS  PubMed  Google Scholar 

  • Mohamadi M, Ebrahimipour SY, Castro J, Torkzadeh-Mahani M (2016) Synthesis, characterization, crystal structure, DNA and BSA binding, molecular docking and in vitro anticancer activities of a mononuclear dioxido-uranium(VI) complex derived from a tridentate ONO aroylhydrazone. J Photochem Photobiol B 158:219–227. https://doi.org/10.1016/j.jphotobiol.2016.03.001

    Article  CAS  PubMed  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris JH, Huang CC, Babbitt PC, Ferrin TE (2007) StructureViz: linking cytoscape and UCSF chimera. Bioinformatics 23:2345–2347

    Article  CAS  PubMed  Google Scholar 

  • Morris JH, Meng EC, Ferrin TE (2010) Computational tools for the interactive exploration of proteomic and structural data. Mol Cell Proteom 9:1703–1715

    Article  CAS  Google Scholar 

  • Nakamoto H, Bardwell JC (2004) Catalysis of disulfide bond formation and isomerization in the Escherichia coli periplasm. Biochim Biophys Acta 1694:111–119

    Article  CAS  PubMed  Google Scholar 

  • Novoselov SV, Kryukov GV, Xu XM, Carlson BA, Hatfield DL, Gladyshev VN (2007) Selenoprotein H is a nucleolar thioredoxin-like protein with a unique expression pattern. J Biol Chem 282:11960–11968

    Article  CAS  PubMed  Google Scholar 

  • Panee J, Stoytcheva ZR, Liu W, Berry MJ (2007) Selenoprotein H is a redox-sensing high mobility group family DNA-binding protein that up-regulates genes involved in glutathione synthesis and phase II detoxification. J Biol Chem 282:23759–23765

    Article  CAS  PubMed  Google Scholar 

  • Patra MC, Pradhan SK, Rath SN, Maharana J (2013) Structural analysis of respirasomes in electron transfer pathway of acidithiobacillus ferrooxidans: a computer-aided molecular designing study. ISRN Biophys 2013:14. https://doi.org/10.1155/2013/295718

    Google Scholar 

  • Pegoraro S, Fiori S, Rudolph-Böhner S, Watanabe TX, Moroder L (1998) Isomorphous replacement of cystine with selenocystine in endothelin: oxidative refolding, biological and conformational properties of [Sec3, Sec11, Nle7]-endothelin-1. J Mol Biol 284:779–792

    Article  CAS  PubMed  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Pierri CL, Parisi G, Porcelli V (2010) Computational approaches for protein function prediction: a combined strategy from multiple sequence alignment to molecular docking-based virtual screening. Biochim Biophys Acta 1804:1695–1712. https://doi.org/10.1016/j.bbapap.2010.04.008

    Article  CAS  PubMed  Google Scholar 

  • Pollastri G, McLysaght A (2005) Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics 21:1719–17120

    Article  CAS  PubMed  Google Scholar 

  • Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, Van der spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rost B, Yachdav G, Liu J (2004) The PredictProtein server. Nucl Acids Res 32:W321–W326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schäffer AA, Aravind L, Madden TL, Shavirin S, Spouge JL, Wolf YI, Koonin EV, Altschul SF (2001) Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res 29:2994–3005

    Article  PubMed  PubMed Central  Google Scholar 

  • Schoonman MJ, Knegtel RM, Grootenhuis PD (1998) Practical evaluation of comparative modelling and threading methods. Comput Chem 22:369–375

    Article  CAS  PubMed  Google Scholar 

  • Shchedrina VA, Zhang Y, Labunskyy VM, Hatfield DL, Gladyshev VN (2010) Structure-function relations, physiological roles, and evolution of mammalian ER-resident selenoproteins. Antioxid Redox Signal 12:839–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen MY, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15:2507–2524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Blundell TL, Mizuguchi K (2001) FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol 310:243–257

    Article  CAS  PubMed  Google Scholar 

  • Simossis VA, Heringa J (2004) The influence of gapped positions in multiple sequence alignments on secondary structure prediction methods. Comput Biol Chem 28:351–366

    Article  CAS  PubMed  Google Scholar 

  • Sonawane KD, Barage SH (2015) Structural analysis of membrane-bound hECE-1 dimer using molecular modeling techniques: insights into conformational changes and Aβ1–42 peptide binding. Amino Acids 47:543–559. https://doi.org/10.1007/s00726-014-1887-8

    Article  CAS  PubMed  Google Scholar 

  • Stadtman TC (1996) Selenocysteine. Annu Rev Bioche 65:83–100

    Article  CAS  Google Scholar 

  • Takamura Y, Fatma N, Kubo E, Singh DP (2006) Regulation of heavy subunit chain of gamma-glutamylcysteine synthetase by tumor necrosis factor-alpha in lens epithelial cells: role of LEDGF/p75. Am J Physiol Cell Physiol 290:C554–C566

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • The UniProt Consortium (2015) UniProt: a hub for protein information. Nucleic Acids Res 43:D204–D212

    Article  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vendruscolo M, Dokholyan NV, Paci E, Karplus M (2002) Small-world view of the amino acids that play a key role in protein folding. Phys Rev E Stat Nonlin Soft Matter Phys 65:061910

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Zhang Y (2008) MUSTER: improving protein sequence profile–profile alignments by using multiple sources of structure information. Proteins 72:547–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Zhang L, Zhu JH, Cheng WH (2016) Nuclear selenoproteins and genome maintenance. IUBMB Life 68:5–12

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Cox AG, Ruzicka JA, Bhat AA, Zhang W, Taylor EW (2000) Molecular modeling and in vitro activity of an HIV-1-encoded glutathione peroxidase. Proc Natl Acad Sci USA 97:6356–6361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong L, Holmgren A (2000) Essential role of selenium in the catalytic activities of mammalian thioredoxin reductase revealed by characterization of recombinant enzymes with selenocysteine mutations. J Biol Chem 275:18121–18128

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

SHB gratefully acknowledges DST-SERB for providing research grant under young scientist scheme (YSS/2015/0001030). The authors are thankful to Bioinformatics Centre, Savitribai Phule Pune University, Pune for infrastructure support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sagar H. Barage or Vijay B. Baladhye.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Handling Editor: H. Jakubowski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3837 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barage, S.H., Deobagkar, D.D. & Baladhye, V.B. Characterization of structural and functional role of selenocysteine in selenoprotein H and its impact on DNA binding. Amino Acids 50, 593–607 (2018). https://doi.org/10.1007/s00726-018-2543-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-018-2543-5

Keywords

Navigation