Skip to main content
Log in

Effect of renal function on homeostasis of asymmetric dimethylarginine (ADMA): studies in donors and recipients of renal transplants

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Asymmetric dimethylarginine (ADMA) is a methylated form of arginine and an endogenous nitric oxide synthase inhibitor. Renal function decline is associated with increase of plasma ADMA in chronic kidney disease populations. It is yet unknown how isolated renal function impairment affects ADMA homeostasis in healthy humans. Here, we measured plasma concentrations and urinary excretion of ADMA using GC–MS/MS in 130 living kidney donors before and at 1.6 (1.6–1.9) months after donation. We additionally analyzed 201 stable renal transplant recipients (RTR) that were included > 1 year after transplantation, as a model for kidney disease in the context of single kidney state. We measured true glomerular filtration rate (mGFR) using 125I-iothalamate. To study enzymatic metabolism of ADMA, we also measured l-citrulline as primary metabolite. Mean age was 52 ± 10 years in donors and 54 ± 12 years in RTR. Renal function was significantly reduced from pre- to post-donation (mGFR: 104 ± 17 vs. 66 ± 10 ml/min per 1.73 m2 BSA, − 36 ± 7%, P < 0.001). Urinary ADMA excretion strongly and significantly decreased from pre- to post-donation (60.6 ± 16.0 vs. 40.5 ± 11.5 µmol/24 h, − 31.5 ± 21.5%, P < 0.001), while plasma ADMA increased only slightly (0.53 ± 0.08 vs. 0.58 ± 0.09 µM, 11.1 ± 20.1%, P < 0.001). Compared to donors post-donation, RTR had significantly worse renal function (mGFR: 49 ± 18 ml/min/1.73 m2, − 25 ± 2%, P < 0.001) and lower urinary ADMA excretion (30.9 ± 12.4 µmol/24 h, − 23.9 ± 3.4%, P < 0.001). Plasma ADMA in RTR (0.60 ± 0.11 µM) did not significantly differ from donors post-donation (2.9 ± 1.9%, P = 0.13). Plasma citrulline was inversely associated with mGFR (st. β: − 0.23, P < 0.001), consistent with increased ADMA metabolism to citrulline with lower GFR. In both groups, the response of urinary ADMA excretion to renal function loss was much larger than that of plasma ADMA. As citrulline was associated with GFR, our data indicate that with renal function impairment, a decrease in urinary ADMA excretion does not lead to a corresponding increase in plasma ADMA, likely due to enhanced metabolism, thus allowing for lower renal excretion of ADMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADMA:

Asymmetric dimethylarginine

AGXT2:

Alanine-glyoxylate aminotransferase 2

BMI:

Body mass index

BSA:

Body surface area

CKD:

Chronic kidney disease

CKD-EPI:

Chronic Kidney Disease Epidemiology Collaboration

DBP:

Diastolic blood pressure

DDAH:

Dimethylarginine dimethylaminohydrolase

DMA:

Dimethylamine

eGFR:

Estimated glomerular filtration rate

FE:

Fractional excretion

GC–MS/MS:

Gas chromatography–tandem mass spectrometry

GFR:

Glomerular filtration rate

mGFR:

Measured glomerular filtration rate

NO:

Nitric oxide

PRMT:

Protein arginine methyltransferase

RTR:

Renal transplant recipient

SBP:

Systolic blood pressure

SD:

Standard deviation

SDMA:

Symmetric dimethylarginine

UHPLC–MS/MS:

Ultra-high performance liquid chromatography–tandem mass spectrometry

References

Download references

Acknowledgements

N. de Ruiter, E. Jonkers, P de Blaauw, and J. van der Krogt, technicians of the laboratory of metabolic diseases, are gratefully acknowledged for citrulline and arginine analyses. Funding was provided by Stichting voor de Technische Wetenschappen (NL) & DSM Animal Nutrition and Health (14939).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yusof Said.

Ethics declarations

Conflict of interest

R. M. Douwes is supported by the applied science division of the Dutch Technology Foundation (Stichting voor Technische Wetenschappen-Nederlandse Organisatie voor Wetenschappelijk Onderzoek; STW-NWO) in a partnership program with DSM Animal Nutrition and Health, a manufacturer of animal nutrition and nutritional products; project number: 14939.

Informed consent and ethical approval

All procedures performed in this study were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

Additional information

Handling Editor: S. S. Gross.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Said, M.Y., Douwes, R.M., van Londen, M. et al. Effect of renal function on homeostasis of asymmetric dimethylarginine (ADMA): studies in donors and recipients of renal transplants. Amino Acids 51, 565–575 (2019). https://doi.org/10.1007/s00726-018-02693-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-018-02693-z

Keywords

Navigation