Skip to main content

Advertisement

Log in

Biased selection of propagation-related TUPs from phage display peptide libraries

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Phage display is rapidly advancing as a screening strategy in drug discovery and drug delivery. Phage-encoded combinatorial peptide libraries can be screened through the affinity selection procedure of biopanning to find pharmaceutically relevant cell-specific ligands. However, the unwanted enrichment of target-unrelated peptides (TUPs) with no true affinity for the target presents an important barrier to the successful screening of phage display libraries. Propagation-related TUPs (Pr-TUPs) are an emerging but less-studied category of phage display-derived false-positive hits that are displayed on the surface of clones with faster propagation rates. Despite long regarded as an unbiased selection system, accumulating evidence suggests that biopanning may create biological bias toward selection of phage clones with certain displayed peptides. This bias can be dependent on or independent of the displayed sequence and may act as a major driving force for the isolation of fast-growing clones. Sequence-dependent bias is reflected by censorship or over-representation of some amino acids in the displayed peptide and sequence-independent bias is derived from either point mutations or rare recombination events occurring in the phage genome. It is of utmost interest to clean biopanning data by identifying and removing Pr-TUPs. Experimental and bioinformatic approaches can be exploited for Pr-TUP discovery. With no doubt, obtaining deeper insight into how Pr-TUPs emerge during biopanning and how they could be detected provides a basis for using cell-targeting peptides isolated from phage display screening in the development of disease-specific diagnostic and therapeutic platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdeen SJ, Swett RJ, Feig AL (2010) Peptide inhibitors targeting Clostridium difficile toxins A and B. ACS Chem Biol 5:1097–1103

    Article  CAS  PubMed  Google Scholar 

  • AC’t Hoen P et al (2012) Phage display screening without repetitious selection rounds. Anal Biochem 421:622–631

    Article  PubMed  Google Scholar 

  • Aghebati-Maleki L et al (2016) Phage display as a promising approach for vaccine development. J Biomed Sci 23:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Bakhshinejad B, Sadeghizadeh M (2016) A polystyrene binding target-unrelated peptide isolated in the screening of phage display library. Anal Biochem 512:120–128

    Article  CAS  PubMed  Google Scholar 

  • Barbas C, Burton D, Scott J, Silverman G (2001) Phage display: a laboratory manual. Cold Spring Harbor Laboratory Press, Plainview

    Google Scholar 

  • Barkocy-Gallagher G, Bassford P (1992) Synthesis of precursor maltose-binding protein with proline in the + 1 position of the cleavage site interferes with the activity of Escherichia coli signal peptidase I in vivo. J Biol Chem 267:1231–1238

    CAS  PubMed  Google Scholar 

  • Beck E et al (1978) Nucleotide sequence of bacteriophage fd DNA. Nucl Acids Res 5:4495–4504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boni I (2006) Diverse molecular mechanisms of translation initiation in prokaryotes. Mol Biol 40:587–596

    Article  CAS  Google Scholar 

  • Brammer LA, Bolduc B, Kass JL, Felice KM, Noren CJ, Hall MF (2008) A target-unrelated peptide in an M13 phage display library traced to an advantageous mutation in the gene II ribosome-binding site. Anal Biochem 373:88–98

    Article  CAS  PubMed  Google Scholar 

  • Che Y-J, Wu H-W, Hung L-Y, Liu C-A, Chang H-Y, Wang K, Lee G-B (2015) An integrated microfluidic system for screening of phage-displayed peptides specific to colon cancer cells and colon cancer stem cells. Biomicrofluidics 9:054121

    Article  PubMed  PubMed Central  Google Scholar 

  • Cung K, Slater RL, Cui Y, Jones SE, Ahmad H, Naik RR, McAlpine MC (2012) Rapid, multiplexed microfluidic phage display. Lab Chip 12:562–565

    Article  CAS  PubMed  Google Scholar 

  • Cwirla SE, Peters EA, Barrett RW, Dower WJ (1990) Peptides on phage: a vast library of peptides for identifying ligands. Proc Natl Acad Sci USA 87:6378–6382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalbey RE, Wickner W (1985) Leader peptidase catalyzes the release of exported proteins from the outer surface of the Escherichia coli plasma membrane. J Biol Chem 260:15925–15931

    CAS  PubMed  Google Scholar 

  • De Smit MH (1998) Translational control by mRNA structure in eubacteria: molecular biology and physical chemistry. Cold Spring Harbor Monogr Arch 35:495–540

    Google Scholar 

  • Derda R, Musah S, Orner BP, Klim JR, Li L, Kiessling LL (2010a) High-throughput discovery of synthetic surfaces that support proliferation of pluripotent cells. J Am Chem Soc 132:1289–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derda R, Tang SK, Whitesides GM (2010b) Uniform amplification of phage with different growth characteristics in individual compartments consisting of monodisperse droplets. Angew Chem Int Ed Engl 49:5301–5304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derda R, Tang SK, Li SC, Ng S, Matochko W, Jafari MR (2011) Diversity of phage-displayed libraries of peptides during panning and amplification. Molecules 16:1776–1803

    Article  CAS  PubMed  Google Scholar 

  • Dev IK, Ray PH (1990) Signal peptidases and signal peptide hydrolases. J Bioenerg Biomembr 22:271–290

    Article  CAS  PubMed  Google Scholar 

  • Devlin JJ, Panganiban LC, Devlin PE (1990) Random peptide libraries: a source of specific protein binding molecules. Science 249:404–407

    Article  CAS  PubMed  Google Scholar 

  • Dickinson H, Lukasser M, Mayer G, Hüttenhofer A (2015) Cell-SELEX: in vitro selection of synthetic small specific ligands. Methods Mol Biol 1296:213–224

    Article  CAS  PubMed  Google Scholar 

  • Dohm JC, Lottaz C, Borodina T, Himmelbauer H (2008) Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucl Acids Res 36:e105

    Article  PubMed  PubMed Central  Google Scholar 

  • Dotto GP, Zinder ND (1984a) Increased intracellular concentration of an initiator protein markedly reduces the minimal sequence required for initiation of DNA synthesis. Proc Natl Acad Sci USA 81:1336–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dotto GP, Zinder ND (1984b) Reduction of the minimal sequence for initiation of DNA synthesis by qualitative or quantitative changes of an initiator protein. Nature 311:279–280

    Article  CAS  PubMed  Google Scholar 

  • Fagerlund A, Myrset AH, Kulseth MA (2014) Construction of a filamentous phage display peptide library. Methods Mol Biol 1088:19–33

    Article  CAS  PubMed  Google Scholar 

  • Fulford W, Model P (1988a) Bacteriophage f1 DNA replication genes: II. The roles of gene V protein and gene II protein in complementary strand synthesis. J Mol Biol 203:39–48

    Article  CAS  PubMed  Google Scholar 

  • Fulford W, Model P (1988b) Regulation of bacteriophage f1 DNA replication: I. New functions for genes II and X. J Mol Biol 203:49–62

    Article  CAS  PubMed  Google Scholar 

  • Gold L (1988) Posttranscriptional regulatory mechanisms in Escherichia coli. Annu Rev Biochem 57:199–233

    Article  CAS  PubMed  Google Scholar 

  • Gray BP, Brown KC (2013) Combinatorial peptide libraries: mining for cell-binding peptides. Chem Rev 114:1020–1081

    Article  PubMed  PubMed Central  Google Scholar 

  • Gray BP, Li S, Brown KC (2013) From phage display to nanoparticle delivery: functionalizing liposomes with multivalent peptides improves targeting to a cancer biomarker. Bioconjug Chem 24:85–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu Y, Zhang J, Wang Y-B, Li S-W, Yang H-J, Luo W-X, Xia N-S (2004) Selection of a peptide mimicking neutralization epitope of hepatitis E virus with phage peptide display technology. World J Gastroenterol 10:1583–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He B et al (2015) BDB: biopanning data bank. Nucl Acids Res 44(D1):D1127–D1132

    Article  PubMed  PubMed Central  Google Scholar 

  • Heemskerk JA, Van Deutekom JCT, Van Kuik-Romeijn P, Platenburg GJ (2013) Molecules for targeting compounds to various selected organs or tissues. Google Patents

  • Heijne G (1994) Membrane proteins: from sequence to structure. Annu Rev Biophys Biomol Struct 23:167–192

    Article  Google Scholar 

  • Herman RE, Makienko EG, Badders DL, Fuller M (2010) Phage displayed cell binding peptides. Google Patents

  • Hertveldt K, Beliën T, Volckaert G (2009) General M13 phage display: M13 phage display in identification and characterization of protein–protein interactions. Methods Mol Biol 502:321–339

    Article  CAS  PubMed  Google Scholar 

  • Hu D et al (2015) Effective optimization of antibody affinity by phage display integrated with high-throughput DNA synthesis and sequencing technologies. PLoS One 10:e0129125

    Article  PubMed  PubMed Central  Google Scholar 

  • Iannolo G, Minenkova O, Gonfloni S, Castagnoli L, Cesareni G (1997) Construction, exploitation and evolution of a new peptide library displayed at high density by fusion to the major coat protein of filamentous phage. Biol Chem 378:517–522

    Article  CAS  PubMed  Google Scholar 

  • Jijakli K et al (2016) The in vitro selection world. Methods 106:3–13

    Article  CAS  PubMed  Google Scholar 

  • Jin W, Qin B, Chen Z, Liu H, Barve A, Cheng K (2016) Discovery of PSMA-specific peptide ligands for targeted drug delivery. Int J Pharm 513:138–147

    Article  CAS  PubMed  Google Scholar 

  • Kay BK, Kasanov J, Yamabhai M (2001) Screening phage-displayed combinatorial peptide libraries. Methods 24:240–246

    Article  CAS  PubMed  Google Scholar 

  • Kehoe JW, Kay BK (2005) Filamentous phage display in the new millennium. Chem Rev 105:4056–4072

    Article  CAS  PubMed  Google Scholar 

  • Kokoska RJ, Steege DA (1998) Appropriate expression of filamentous phage f1 DNA replication genes II and X requires RNase E-dependent processing and separate mRNAs. J Bacteriol 180:3245–3249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kozak M (2005) Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 361:13–37

    Article  CAS  PubMed  Google Scholar 

  • Krumpe LR et al (2006) T7 lytic phage-displayed peptide libraries exhibit less sequence bias than M13 filamentous phage-displayed peptide libraries. Proteomics 6:4210–4222

    Article  CAS  PubMed  Google Scholar 

  • Krumpe LR, Schumacher KM, McMahon JB, Makowski L, Mori T (2007) Trinucleotide cassettes increase diversity of T7 phage-displayed peptide library. BMC Biotechnol 7:1

    Article  Google Scholar 

  • Kuhn A, Troschel D (1992) Distinct steps in the insertion pathway of bacteriophage coat proteins. New Compr Biochem 22:33–47

    Article  CAS  Google Scholar 

  • Liu GW et al (2015) Efficient identification of murine M2 macrophage peptide targeting ligands by phage display and next-generation sequencing. Bioconjug Chem 26:1811–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makowski L (1993) Structural constraints on the display of foreign peptides on filamentous bacteriophages. Gene 128:5–11

    Article  CAS  PubMed  Google Scholar 

  • Malik P et al (1996) Role of capsid structure and membrane protein processing in determining the size and copy number of peptides displayed on the major coat protein of filamentous bacteriophage. J Mol Biol 260:9–21

    Article  CAS  PubMed  Google Scholar 

  • Mandava S, Makowski L, Devarapalli S, Uzubell J, Rodi DJ (2004) RELIC—a bioinformatics server for combinatorial peptide analysis and identification of protein–ligand interaction sites. Proteomics 4:1439–1460

    Article  CAS  PubMed  Google Scholar 

  • Mann AP et al (2016) A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries. Nat Commun. doi:10.1038/ncomms11980

    Google Scholar 

  • Marvin D (1998) Filamentous phage structure, infection and assembly. Curr Opin Struct Biol 8:150–158

    Article  CAS  PubMed  Google Scholar 

  • Marvin D, Symmons M, Straus S (2014) Structure and assembly of filamentous bacteriophages. Prog Biophys Mol Biol 114:80–122

    Article  CAS  PubMed  Google Scholar 

  • Matochko WL, Derda R (2013) Error analysis of deep sequencing of phage libraries: peptides censored in sequencing. Comput Math Methods Med. doi:10.1155/2013/491612

    PubMed  PubMed Central  Google Scholar 

  • Matochko WL, Chu K, Jin B, Lee SW, Whitesides GM, Derda R (2012a) Deep sequencing analysis of phage libraries using Illumina platform. Methods 58:47–55

    Article  CAS  PubMed  Google Scholar 

  • Matochko WL, Ng S, Jafari MR, Romaniuk J, Tang SK, Derda R (2012b) Uniform amplification of phage display libraries in monodisperse emulsions. Methods 58:18–27

    Article  CAS  PubMed  Google Scholar 

  • Matochko WL, Li SC, Tang SK, Derda R (2014) Prospective identification of parasitic sequences in phage display screens. Nucl Acids Res 42:1784–1798

    Article  CAS  PubMed  Google Scholar 

  • McCarthy JE, Gualerzi C (1990) Translational control of prokaryotic gene expression. Trends Genet 6:78–85

    Article  CAS  PubMed  Google Scholar 

  • McGuire MJ, Li S, Brown KC (2009) Biopanning of phage displayed peptide libraries for the isolation of cell-specific ligands. Methods Mol Biol 504:291–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menendez A, Scott JK (2005) The nature of target-unrelated peptides recovered in the screening of phage-displayed random peptide libraries with antibodies. Anal Biochem 336:145–157

    Article  CAS  PubMed  Google Scholar 

  • Michel B, Zinder ND (1989a) In vitro binding of the bacteriophage f1 gene V protein to the gene II RNA-operator and its DNA analog. Nucl Acids Res 17:7333–7344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel B, Zinder ND (1989b) Translational repression in bacteriophage f1: characterization of the gene V protein target on the gene II mRNA. Proc Natl Acad Sci USA 86:4002–4006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Model P, McGill C, Mazur B, Fulford WD (1982) The replication of bacteriophage f1: gene V protein regulates the synthesis of gene II protein. Cell 29:329–335

    Article  CAS  PubMed  Google Scholar 

  • Nakamoto T (2006) A unified view of the initiation of protein synthesis. Biochem Biophys Res Commun 341:675–678

    Article  CAS  PubMed  Google Scholar 

  • Nemudraya A, Richter V, Kuligina E (2016) Phage peptide libraries as a source of targeted ligands. Acta Nat 8(1):48–57

    CAS  Google Scholar 

  • Nguyen KT et al (2014) Identification and characterization of mutant clones with enhanced propagation rates from phage-displayed peptide libraries. Anal Biochem 462:35–43

    Article  CAS  PubMed  Google Scholar 

  • Nilsson I, von Heijne G (1992) A signal peptide with a proline next to the cleavage site inhibits leader peptidase when present in a sec-independent protein. FEBS Lett 299:243–246

    Article  CAS  PubMed  Google Scholar 

  • Noren KA, Noren CJ (2001) Construction of high-complexity combinatorial phage display peptide libraries. Methods 23:169–178

    Article  CAS  PubMed  Google Scholar 

  • Peters EA, Schatz PJ, Johnson SS, Dower WJ (1994) Membrane insertion defects caused by positive charges in the early mature region of protein pIII of filamentous phage fd can be corrected by prlA suppressors. J Bacteriol 176:4296–4305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrenko V (2008) Evolution of phage display: from bioactive peptides to bioselective nanomaterials. Expert Opin Drug Del 5:825–836

    Article  CAS  Google Scholar 

  • Plotkin JB, Kudla G (2011) Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet 12:32–42

    Article  CAS  PubMed  Google Scholar 

  • Rakonjac J, Bennett N, Spagnuolo J, Gagic D, Russel M (2011) Filamentous bacteriophage: biology, phage display and nanotechnology applications. Curr Issues Mol Biol 13(2):51–76

    CAS  PubMed  Google Scholar 

  • Ravn U et al (2010) By-passing in vitro screening—next generation sequencing technologies applied to antibody display and in silico candidate selection. Nucl Acids Res 38:e193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebollo IR, Sabisz M, Baeriswyl V, Heinis C (2014) Identification of target-binding peptide motifs by high-throughput sequencing of phage-selected peptides. Nucl Acids Res 42:e169

    Article  Google Scholar 

  • Rodi DJ, Makowski L (1999) Phage-display technology—finding a needle in a vast molecular haystack. Curr Opin Biotechnol 10:87–93

    Article  CAS  PubMed  Google Scholar 

  • Rodi DJ, Soares AS, Makowski L (2002) Quantitative assessment of peptide sequence diversity in M13 combinatorial peptide phage display libraries. J Mol Biol 322:1039–1052

    Article  CAS  PubMed  Google Scholar 

  • Rosch JC, Hollmann EK, Lippmann ES (2016) In vitro selection technologies to enhance biomaterial functionality. Exp Biol Med 241:962–971

    Article  CAS  Google Scholar 

  • Ru B, ‘t Hoen PA, Nie F, Lin H, Guo F-B, Huang J (2014) PhD7Faster: predicting clones propagating faster from the Ph. D.-7 phage display peptide library. J Bioinform Comput Biol 12:1450005

    Article  PubMed  Google Scholar 

  • Russel M (1995) Moving through the membrane with filamentous phages. Trends Microbiol 3:223–228

    Article  CAS  PubMed  Google Scholar 

  • Scott JK, Smith GP (1990) Searching for peptide ligands with an epitope library. Science 249:386–390

    Article  CAS  PubMed  Google Scholar 

  • Shen LM, Lee JI, Cheng S, Jutte H, Kuhn A, Dalbey RE (1991) Use of site-directed mutagenesis to define the limits of sequence variation tolerated for processing of the M13 procoat protein by the Escherichia coli leader peptidase. Biochemistry 30:11775–11781

    Article  CAS  PubMed  Google Scholar 

  • Shine J, Dalgarno L (1974) The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 71:1342–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sidhu SS (2001) Engineering M13 for phage display. Biomol Eng 18:57–63

    Article  CAS  PubMed  Google Scholar 

  • Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    Article  CAS  PubMed  Google Scholar 

  • Smith GP (1988) Filamentous phage assembly: morphogenetically defective mutants that do not kill the host. Virology 167:156–165

    Article  CAS  PubMed  Google Scholar 

  • Steitz JA, Jakes K (1975) How ribosomes select initiator regions in mRNA: base pair formation between the 3′terminus of 16S rRNA and the mRNA during initiation of protein synthesis in Escherichia coli. Proc Natl Acad Sci USA 72:4734–4738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas WD, Golomb M, Smith GP (2010) Corruption of phage display libraries by target-unrelated clones: diagnosis and countermeasures. Anal Biochem 407:237–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tikunova N, Morozova V (2009) Phage display on the base of filamentous bacteriophages: application for recombinant antibodies selection. Acta Nat 1(3):8–20

    Google Scholar 

  • Tuller T, Waldman YY, Kupiec M, Ruppin E (2010) Translation efficiency is determined by both codon bias and folding energy. Proc Natl Acad Sci USA 107:3645–3650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umlauf BJ, McGuire MJ, Brown KC (2014) Introduction of plasmid encoding for rare tRNAs reduces amplification bias in phage display biopanning. Biotechniques 58:81

    Google Scholar 

  • van Wezenbeek PM, Hulsebos TJ, Schoenmakers JG (1980) Nucleotide sequence of the filamentous bacteriophage M13 DNA genome: comparison with phage fd. Gene 11:129–148

    Article  PubMed  Google Scholar 

  • Vodnik M, Zager U, Strukelj B, Lunder M (2011) Phage display: selecting straws instead of a needle from a haystack. Molecules 16:790–817

    Article  CAS  PubMed  Google Scholar 

  • Williams RM, Sooter LJ (2015) In vitro selection of cancer cell-specific molecular recognition elements from amino acid libraries. J Immunol Res. doi:10.1155/2015/186586

    Google Scholar 

  • Wilson B, Kautzer C, Antelman D (1994) Increased protein expression through improved ribosome-binding sites obtained by library mutagenesis. Biotechniques 17:944–953

    CAS  PubMed  Google Scholar 

  • Yamane K, Mizushima S (1988) Introduction of basic amino acid residues after the signal peptide inhibits protein translocation across the cytoplasmic membrane of Escherichia coli. Relation to the orientation of membrane proteins. J Biol Chem 263:19690–19696

    CAS  PubMed  Google Scholar 

  • Yeh C-Y, Hsiao J-K, Wang Y-P, Lan C-H, Wu H-C (2016) Peptide-conjugated nanoparticles for targeted imaging and therapy of prostate cancer. Biomaterials 99:1–15

    Article  CAS  PubMed  Google Scholar 

  • Yen TB, Webster RE (1982) Translational control of bacteriophage f1 gene II and gene X proteins by gene V protein. Cell 29:337–345

    Article  CAS  PubMed  Google Scholar 

  • Zacher AN, Stock CA, Golden JW, Smith GP (1980) A new filamentous phage cloning vector: fd-tet. Gene 9:127–140

    Article  CAS  PubMed  Google Scholar 

  • Zaman G, Schoenmakers J, Konings R (1990) Translational regulation of M13 gene II protein by its cognate single-stranded DNA binding protein. Eur J Biochem 189:119–124

    Article  CAS  PubMed  Google Scholar 

  • Zaman G, Kaan A, Schoenmakers J, Konings R (1992) Gene V protein-mediated translational regulation of the synthesis of gene II protein of the filamentous bacteriophage M13: a dispensable function of the filamentous-phage genome. J Bacteriol 174:595–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanconato S, Minervini G, Poli I, Lucrezia D (2011) Selection dynamic of Escherichia coli host in M13 combinatorial peptide phage display libraries. Biosci Biotechnol Biochem 75:812–815

    Article  CAS  PubMed  Google Scholar 

  • Zinder N, Horiuchi K (1985) Multiregulatory element of filamentous bacteriophages. Microbiol Rev 49:101

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Bakhshinejad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Additional informed consent was obtained from all individual participants for whom identifying information is included in this article.

Additional information

Handling Editor: J. D. Wade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zade, H.M., Keshavarz, R., Shekarabi, H.S.Z. et al. Biased selection of propagation-related TUPs from phage display peptide libraries. Amino Acids 49, 1293–1308 (2017). https://doi.org/10.1007/s00726-017-2452-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-017-2452-z

Keywords

Navigation