Skip to main content

Advertisement

Log in

Human interstitial cellular model in therapeutics of heart valve calcification

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Calcific aortic valve disease is a common, severe heart condition that is currently with no proven, effective drug treatment and requires a surgical valve replacement or an entire heart explanation. Thus, developing novel, targeted therapeutic approaches becomes a major goal for cardiovascular disease research. To achieve this goal, isolated heart valve interstitial cells could be an advanced model to explore molecular mechanisms and measure drug efficacy. Based on this progress, molecular mechanisms that harbor components of  inflammation and fibrosis coupled with proteins, for example, BMP-2, TLRs, RANKL, Osteoprotegerin, have been proposed. Small molecules or antibodies targeting these proteins have shown promising efficacy for either reversing or slowing down calcification development in vitro. In this review, we summarize these potential therapeutics with some highlights of interstitial cellular models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acharya A, Hans CP, Koenig SN, Nichols HA, Galindo CL, Garner HR, Merrill WH, Hinton RB, Garg V (2011) Inhibitory role of Notch1 in calcific aortic valve disease. PLoS One 6(11):e27743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adiguzel E, Ahmad PJ, Franco C, Bendeck MP (2009) Collagens in the progression and complications of atherosclerosis. Vasc Med 14(1):73–89

    Article  PubMed  Google Scholar 

  • Agca Y, Qian S, Agca C, Seye CI (2016) Direct evidence for P2Y2 receptor involvement in vascular response to injury. J Vasc Res 53(3–4):163–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aksoy Y, Yagmur C, Tekin GO, Yagmur J, Topal E, Kekilli E, Turhan H, Kosar F, Yetkin E (2005) Aortic valve calcification: association with bone mineral density and cardiovascular risk factors. Coron Artery Dis 16(6):379–383

    Article  PubMed  Google Scholar 

  • Albanese I, Yu B, Al-Kindi H, Barratt B, Ott L, Al-Refai M, de Varennes B, Shum-Tim D, Cerruti M, Gourgas O, Rhéaume E (2016) Role of noncanonical wnts signaling pathway in human aortic valve calcification. Arteriosclerosis, thrombosis, and vascular biology. ATVBAHA-116

  • Alhan E, Türkyılmaz S, Erçin C, Kural BV (2006) Effects of lazaroid U-74389G on acute necrotizing pancreatitis in rats. Eur Surg Res 38(2):70–75

    Article  CAS  PubMed  Google Scholar 

  • Andrassy M, Volz HC, Schuessler A, Gitsioudis G, Hofmann N, Laohachewin D, Wienbrandt AR, Kaya Z, Bierhaus A, Giannitsis E, Katus HA (2012) HMGB1 is associated with atherosclerotic plaque composition and burden in patients with stable coronary artery disease. PLoS One 7(12):e52081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arevalos CA, Berg JM, Nguyen JM, Godfrey EL, Iriondo C, Grande-Allen KJ (2016) Valve interstitial cells act in a pericyte manner promoting angiogenesis and invasion by valve endothelial cells. Ann Biomed Eng 44(9):2707–2723

    Article  PubMed  PubMed Central  Google Scholar 

  • Awan Z, Denis M, Bailey D, Giaid A, Prat A, Goltzman D, Seidah NG, Genest J (2011) The LDLR deficient mouse as a model for aortic calcification and quantification by micro-computed tomography. Atherosclerosis 219(2):455–462

    Article  CAS  PubMed  Google Scholar 

  • Ayoub S, Ferrari G, Gorman RC, Gorman JH, Schoen FJ, Sacks MS (2016) Heart valve biomechanics and underlying mechanobiology. Compr Physiol 6(4):1743–1780

    Article  PubMed  PubMed Central  Google Scholar 

  • Babu AN, Meng X, Zou N, Yang X, Wang M, Song Y, Cleveland JC, Weyant M, Banerjee A, Fullerton DA (2008) Lipopolysaccharide stimulation of human aortic valve interstitial cells activates inflammation and osteogenesis. Ann Thorac Surg 86(1):71–76

    Article  PubMed  Google Scholar 

  • Balachandran K, Bakay MA, Connolly JM, Zhang X, Yoganathan AP, Levy RJ (2011) Aortic valve cyclic stretch causes increased remodeling activity and enhanced serotonin receptor responsiveness. Ann Thorac Surg 92(1):147–153

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnette DN, Hulin A, Ahmed AI, Colige AC, Azhar M, Lincoln J (2013) Tgfβ-Smad and MAPK signaling mediate scleraxis and proteoglycan expression in heart valves. J Mol Cell Cardiol 65:137–146

    Article  CAS  PubMed  Google Scholar 

  • Barrett-Connor E, Mosca L, Collins P, Geiger MJ, Grady D, Kornitzer M, McNabb MA, Wenger NK (2006) Effects of raloxifene on cardiovascular events and breast cancer in postmenopausal women. N Engl J Med 355(2):125–137

    Article  CAS  PubMed  Google Scholar 

  • Barth M, Rickelt S, Noffz E, Winter-Simanowski S, Niemann H, Akhyari P, Lichtenberg A, Franke WW (2012) The adhering junctions of valvular interstitial cells: molecular composition in fetal and adult hearts and the comings and goings of plakophilin-2 in situ, in cell culture and upon re-association with scaffolds. Cell Tissue Res 348(2):295–307

    Article  CAS  PubMed  Google Scholar 

  • Baudy AR, Reeves EK, Damsker JM, Heier C, Garvin LM, Dillingham BC, McCall J, Rayavarapu S, Wang Z, Vandermeulen JH, Sali A (2012) Δ-9, 11 modification of glucocorticoids dissociates nuclear factor-κB inhibitory efficacy from glucocorticoid response element-associated side effects. J Pharmacol Exp Ther 343(1):225–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchareb R, Mahmut A, Nsaibia MJ, Boulanger MC, Dahou A, Lépine JL, Laflamme MH, Hadji F, Couture C, Trahan S, Pagé S (2015) Autotaxin derived from lipoprotein (a) and valve interstitial cells promotes inflammation and mineralization of the aortic valve. Circulation. CIRCULATIONAHA-115

  • Branchetti E, Sainger R, Poggio P, Grau JB, Patterson-Fortin J, Bavaria JE, Chorny M, Lai E, Gorman RC, Levy RJ, Ferrari G (2013) Antioxidant enzymes reduce DNA damage and early activation of valvular interstitial cells in aortic valve sclerosis. Arterioscler Thromb Vasc Biol 33(2):e66–e74

    Article  CAS  PubMed  Google Scholar 

  • Brand NJ, Roy A, Hoare G, Chester A, Yacoub MH (2006) Cultured interstitial cells from human heart valves express both specific skeletal muscle and non-muscle markers. Int J Biochem Cell Biol 38(1):30–42

    Article  CAS  PubMed  Google Scholar 

  • Brilla CG, Funck RC, Rupp H (2000) Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation 102(12):1388–1393

    Article  CAS  PubMed  Google Scholar 

  • Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, Boyle WJ (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12(9):1260–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butcher JT, Markwald RR (2007) Valvulogenesis: the moving target. Philos Trans R Soc Lond B Biol Sci 362(1484):1489–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capoulade R, Clavel MA, Mathieu P, Côté N, Dumesnil JG, Arsenault M, Bédard É, Pibarot P (2013) Impact of hypertension and renin–angiotensin system inhibitors in aortic stenosis. Eur J Clin Invest 43(12):1262–1272

    Article  CAS  PubMed  Google Scholar 

  • Chang YT, Wann SR, Hsieh KH, Liu YC, Chang CH, Huang MS, Huang CI, Chang HT (2011) The effects of lazaroid U-74389G in a rat sepsis model. Inflamm Res 60(1):29–35

    Article  CAS  PubMed  Google Scholar 

  • Chen JH, Chen WL, Sider KL, Yip CY, Simmons CA (2011) β-Catenin mediates mechanically regulated, transforming growth factor-β1-induced myofibroblast differentiation of aortic valve interstitial cells. Arterioscler Thromb Vasc Biol 31(3):590–597

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Ryzhova LM, Sewell-Loftin MK, Brown CB, Huppert SS, Baldwin HS, Merryman WD (2015) Notch1 mutation leads to valvular calcification through enhanced myofibroblast mechanotransduction significance. Arterioscler Thromb Vasc Biol 35(7):1597–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chester AH, Taylor PM (2007) Molecular and functional characteristics of heart-valve interstitial cells. Philos Trans R Soc Lond B Biol Sci 362(1484):1437–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Côté N, Couture C, Pibarot P, Després JP, Mathieu P (2011) Angiotensin receptor blockers are associated with a lower remodelling score of stenotic aortic valves. Eur J Clin Invest 41(11):1172–1179

    Article  PubMed  CAS  Google Scholar 

  • Côté N, Mahmut A, Fournier D, Boulanger MC, Couture C, Després JP, Trahan S, Bossé Y, Pagé S, Pibarot P, Mathieu P (2013) Angiotensin receptor blockers are associated with reduced fibrosis and interleukin-6 expression in calcific aortic valve disease. Pathobiology 81(1):15–24

    Article  PubMed  CAS  Google Scholar 

  • Das D, Holmes A, Murphy GA, Mishra K, Rosenkranz AC, Horowitz JD, Kennedy JA (2013) TGF-beta1-Induced MAPK activation promotes collagen synthesis, nodule formation, redox stress and cellular senescence in porcine aortic valve interstitial cells. J Heart Valve Dis 22(5):621–630

    PubMed  Google Scholar 

  • Dawson S, Lawrie A (2017) From bones to blood pressure, developing novel biologic approaches targeting the osteoprotegerin pathway for pulmonary vascular disease. Pharmacol Ther 169:78–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Smet BJ, Van der Zande J, Van Der Helm YJ, Kuntz RE, Borst C, Post MJ (1998) The atherosclerotic Yucatan animal model to study the arterial response after balloon angioplasty: the natural history of remodeling. Cardiovasc Res 39(1):224–232

    Article  PubMed  Google Scholar 

  • Deng XS, Meng X, Zeng Q, Fullerton D, Mitchell M, Jaggers J (2015) Adult aortic valve interstitial cells have greater responses to toll-like receptor 4 stimulation. Ann Thorac Surg 99(1):62–71

    Article  PubMed  Google Scholar 

  • Duan B, Hockaday LA, Kapetanovic E, Kang KH, Butcher JT (2013) Stiffness and adhesivity control aortic valve interstitial cell behavior within hyaluronic acid based hydrogels. Acta Biomater 9(8):7640–7650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan B, Kapetanovic E, Hockaday LA, Butcher JT (2014) Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater 10(5):1836–1846

    Article  CAS  PubMed  Google Scholar 

  • El Husseini D, Boulanger MC, Mahmut A, Bouchareb R, Laflamme MH, Fournier D, Pibarot P, Bossé Y, Mathieu P (2014) P2Y2 receptor represses IL-6 expression by valve interstitial cells through Akt: implication for calcific aortic valve disease. J Mol Cell Cardiol 72:146–156

    Article  PubMed  CAS  Google Scholar 

  • Fang M, Alfieri CM, Hulin A, Conway SJ, Yutzey KE (2014) Loss of β-catenin promotes chondrogenic differentiation of aortic valve interstitial cells. Arteriosclerosis, thrombosis, and vascular biology. ATVBAHA-114

  • Farrar EJ, Pramil V, Richards JM, Mosher CZ, Butcher JT (2016) Valve interstitial cell tensional homeostasis directs calcification and extracellular matrix remodeling processes via RhoA signaling. Biomaterials 105:25–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Pisonero I, Lopez J, Onecha E, Duenas AI, Maeso P, Crespo MS, San Roman JA, García-Rodríguez C (2014) Synergy between sphingosine 1-phosphate and lipopolysaccharide signaling promotes an inflammatory, angiogenic and osteogenic response in human aortic valve interstitial cells. PLoS One 9(10):e109081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fisher CI, Chen J, Merryman WD (2013) Calcific nodule morphogenesis by heart valve interstitial cells is strain dependent. Biomech Model Mechanobiol 12(1):5–17

    Article  PubMed  Google Scholar 

  • Fu Z, Luo B, Li M, Peng B, Wang Z (2016) Effects of Raloxifene on the proliferation and apoptosis of human aortic valve interstitial cells. BioMed Res Int. doi:10.1155/2016/5473204

    Google Scholar 

  • Galeone A, Brunetti G, Oranger A, Greco G, Di Benedetto A, Mori G, Colucci S, Zallone A, Paparella D, Grano M (2013) Aortic valvular interstitial cells apoptosis and calcification are mediated by TNF-related apoptosis-inducing ligand. Int J Cardiol 169(4):296–304

    Article  PubMed  Google Scholar 

  • Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN, Grossfeld PD, Srivastava D (2005) Mutations in NOTCH1 cause aortic valve disease. Nature 437(7056):270–274

    Article  CAS  PubMed  Google Scholar 

  • Gohlke-Bärwolf C, Minners J, Jander N, Gerdts E, Wachtell K, Ray S, Pedersen TR (2013) Natural history of mild and of moderate aortic stenosis—new insights from a large prospective European study. Curr Probl Cardiol 38(9):365–409

    Article  PubMed  Google Scholar 

  • Gomez-Stallons MV, Wirrig-Schwendeman EE, Hassel KR, Conway SJ, Yutzey KE (2016) Bone morphogenetic protein signaling is required for aortic valve calcification. Arteriosclerosis, thrombosis, and vascular biology. ATVBAHA-116

  • Gu X, Masters KS (2011) Role of the Rho pathway in regulating valvular interstitial cell phenotype and nodule formation. Am J Physiol Heart Circ Physiol 300(2):H448–H458

    Article  CAS  PubMed  Google Scholar 

  • Guerraty M, Mohler ER (2007) Models of aortic valve calcification. J Investig Med 55(6):278–283

    Article  PubMed  Google Scholar 

  • Hadji F, Boulanger MC, Guay SP, Gaudreault N, Amellah S, Mkannez G, Bouchareb R, Marchand JT, Nsaibia MJ, Guauque-Olarte S, Pibarot P (2016) Altered DNA methylation of long noncoding RNA H19 in calcific aortic valve disease promotes mineralization by silencing NOTCH1 clinical perspective. Circulation 134(23):1848–1862

    Article  CAS  PubMed  Google Scholar 

  • Han L, Gotlieb AI (2012) Fibroblast growth factor-2 promotes in vitro heart valve interstitial cell repair through the Akt1 pathway. Cardiovasc Pathol 21(5):382–389

    Article  CAS  PubMed  Google Scholar 

  • Harper E, Forde H, Davenport C, Rochfort KD, Smith D, Cummins PM (2016) Vascular calcification in type-2 diabetes and cardiovascular disease: integrative roles for OPG, RANKL and TRAIL. Vasc Pharmacol 82:30–40

    Article  CAS  Google Scholar 

  • Heier CR, Damsker JM, Yu Q, Dillingham BC, Huynh T, Van der Meulen JH, Sali A, Miller BK, Phadke A, Scheffer L, Quinn J (2013) VBP15, a novel anti-inflammatory and membrane-stabilizer, improves muscular dystrophy without side effects. EMBO Mol Med 5(10):1569–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helske S, Kupari M, Lindstedt KA, Kovanen PT (2007) Aortic valve stenosis: an active atheroinflammatory process. Curr Opin Lipidol 18(5):483–491

    Article  CAS  PubMed  Google Scholar 

  • Higgins CL, Isbilir S, Basto P, Chen IY, Vaduganathan M, Vaduganathan P, Reardon MJ, Lawrie G, Peterson L, Morrisett JD (2015) Distribution of alkaline phosphatase, osteopontin, RANK ligand and osteoprotegerin in calcified human carotid atheroma. Protein J 34(5):315–328

    Article  CAS  PubMed  Google Scholar 

  • Houslay ES, Cowell SJ, Prescott RJ, Reid J, Burton J, Northridge DB, Boon NA, Newby DE (2006) Progressive coronary calcification despite intensive lipid-lowering treatment: a randomised controlled trial. Heart 92(9):1207–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huk DJ, Austin BF, Horne TE, Hinton RB, Ray WC, Heistad DD, Lincoln J (2015) Valve endothelial cell–derived Tgfβ1 signaling promotes nuclear localization of Sox9 in interstitial cells associated with attenuated calcification. Arteriosclerosis, thrombosis, and vascular biology. ATVBAHA-115

  • Hutcheson JD, Chen J, Sewell-Loftin MK, Ryzhova LM, Fisher CI, Su YR, Merryman WD (2013) Cadherin-11 regulates cell–cell tension necessary for calcific nodule formation by valvular myofibroblasts. Arterioscler Thromb Vasc Biol 33(1):114–120

    Article  CAS  PubMed  Google Scholar 

  • Ibuka S, Matsumoto S, Fujii S, Kikuchi A (2015) The P2Y2 receptor promotes Wnt3a-and EGF-induced epithelial tubular formation by IEC6 cells by binding to integrins. J Cell Sci 128(11):2156–2168

    Article  CAS  PubMed  Google Scholar 

  • Iung B, Vahanian A (2011) Epidemiology of valvular heart disease in the adult. Nat Rev Cardiol 8(3):162–172

    Article  PubMed  Google Scholar 

  • Johnson CM, Hanson MN, Helgeson SC (1987) Porcine cardiac valvular subendothelial cells in culture: cell isolation and growth characteristics. J Mol Cell Cardiol 19(12):1185–1193

    Article  CAS  PubMed  Google Scholar 

  • Kaden JJ, Bickelhaupt S, Grobholz R, Haase KK, Sarιkoç A, Kιlιç R, Brueckmann M, Lang S, Zahn I, Vahl C, Hagl S (2004) Receptor activator of nuclear factor κB ligand and osteoprotegerin regulate aortic valve calcification. J Mol Cell Cardiol 36(1):57–66

    Article  CAS  PubMed  Google Scholar 

  • Kekewska A, Görnemann T, Jantschak F, Glusa E, Pertz HH (2012) Antiserotonergic properties of terguride in blood vessels, platelets, and valvular interstitial cells. J Pharmacol Exp Ther 340(2):369–376

    Article  CAS  PubMed  Google Scholar 

  • Kim DE, Kim Y, Cho DH, Jeong SY, Kim SB, Suh N, Lee JS, Choi EK, Koh JY, Hwang JJ, Kim CS (2015) Raloxifene induces autophagy-dependent cell death in breast cancer cells via the activation of AMP-activated protein kinase. Mol Cells 38(2):138

    Article  PubMed  CAS  Google Scholar 

  • Kirschner CM, Alge DL, Gould ST, Anseth KS (2014) Clickable, photodegradable hydrogels to dynamically modulate valvular interstitial cell phenotype. Adv Healthc Mater 3(5):649–657

    Article  CAS  PubMed  Google Scholar 

  • Latif N, Quillon A, Sarathchandra P, McCormack A, Lozanoski A, Yacoub MH, Chester AH (2015) Modulation of human valve interstitial cell phenotype and function using a fibroblast growth factor 2 formulation. PLoS One 10(6):e0127844

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Libby P (2013) Collagenases and cracks in the plaque. J Clin Investig 123(8):3201–3203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Libby P, Sasiela W (2006) Plaque stabilization: can we turn theory into evidence? Am J Cardiol 98(11):S26–S33

    Article  CAS  Google Scholar 

  • Lin ME, Chen TM, Wallingford MC, Nguyen NB, Yamada S, Sawangmake C, Zhang J, Speer MY, Giachelli CM (2016) Runx2 deletion in smooth muscle cells inhibits vascular osteochondrogenesis and calcification but not atherosclerotic lesion formation. Cardiovasc Res 112(2):606–616

    Article  CAS  PubMed Central  Google Scholar 

  • Lindman BR, Clavel MA, Mathieu P, Iung B, Lancellotti P, Otto CM, Pibarot P (2016) Calcific aortic stenosis. Nature reviews. Dis Prim 2:16006

    Article  Google Scholar 

  • López B, Querejeta R, Varo N, González A, Larman M, Ubago JL, Díez J (2001) Usefulness of serum carboxy-terminal propeptide of procollagen type I in assessment of the cardioreparative ability of antihypertensive treatment in hypertensive patients. Circulation 104(3):286–291

    Article  PubMed  Google Scholar 

  • López J, Fernández-Pisonero I, Dueñas AI, Maeso P, San Román JA, Crespo MS, García-Rodríguez C (2012) Viral and bacterial patterns induce TLR-mediated sustained inflammation and calcification in aortic valve interstitial cells. Int J Cardiol 158(1):18–25

    Article  PubMed  Google Scholar 

  • Maahs DM, Snell-Bergeon JK, Kinney GL, Wadwa RP, Garg S, Ogden LG, Rewers M (2007) ACE-I/ARB treatment in type 1 diabetes patients with albuminuria is associated with lower odds of progression of coronary artery calcification. J Diabetes Complicat 21(5):273–279

    Article  PubMed  Google Scholar 

  • Mahmut A, Boulanger MC, El Husseini D, Fournier D, Bouchareb R, Després JP, Pibarot P, Bossé Y, Mathieu P (2014) Elevated expression of lipoprotein-associated phospholipase A2 in calcific aortic valve disease: implications for valve mineralization. J Am Coll Cardiol 63(5):460–469

    Article  CAS  PubMed  Google Scholar 

  • Mary A, Hartemann A, Liabeuf S, Aubert CE, Kemel S, Salem JE, Cluzel P, Lenglet A, Massy ZA, Lalau JD, Mentaverri R (2017) Association between metformin use and below-the-knee arterial calcification score in type 2 diabetic patients. Cardiovasc Diabetol 16(1):24

    Article  PubMed  PubMed Central  Google Scholar 

  • Masjedi S, Amarnath A, Baily KM, Ferdous Z (2016) Comparison of calcification potential of valvular interstitial cells isolated from individual aortic valve cusps. Cardiovasc Pathol 25(3):185–194

    Article  CAS  PubMed  Google Scholar 

  • Masoumi N, Johnson KL, Howell MC, Engelmayr GC (2013) Valvular interstitial cell seeded poly (glycerol sebacate) scaffolds: toward a biomimetic in vitro model for heart valve tissue engineering. Acta Biomater 9(4):5974–5988

    Article  CAS  PubMed  Google Scholar 

  • Mathieu P, Voisine P, Pepin A, Shetty R, Savard N, Dagenais F (2005) Calcification of human valve interstitial cells is dependent on alkaline phosphatase activity. J Heart Valve Dis 14(3):353–357

    PubMed  Google Scholar 

  • Mathieu P, Bouchareb R, Boulanger MC (2015) Innate and adaptive immunity in calcific aortic valve disease. J Immunol Res 3:2015

    Google Scholar 

  • Meng X, Ao L, Song Y, Babu A, Yang X, Wang M, Weyant MJ, Dinarello CA, Cleveland JC, Fullerton DA (2008) Expression of functional Toll-like receptors 2 and 4 in human aortic valve interstitial cells: potential roles in aortic valve inflammation and stenosis. Am J Physiol Cell Physiol 294(1):C29–C35

    Article  CAS  PubMed  Google Scholar 

  • Meredith GT, Ramponi F, Scurry JP, Singh T (2013) Fatty infiltration of an aortic valve. Ann Thorac Surg 96(2):697–699

    Article  PubMed  Google Scholar 

  • Miller JD, Weiss RM, Heistad DD (2011) Calcific aortic valve stenosis: methods, models, and mechanisms. Circ Res 108(11):1392–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohler ER, Gannon F, Reynolds C, Zimmerman R, Keane MG, Kaplan FS (2001) Bone formation and inflammation in cardiac valves. Circulation 103(11):1522–1528

    Article  PubMed  Google Scholar 

  • Monzack EL, Masters KS (2011) Can valvular interstitial cells become true osteoblasts? A side-by-side comparison. J Heart Valve Dis 20(4):449

    PubMed  PubMed Central  Google Scholar 

  • Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Després JP, Fullerton HJ, Howard VJ (2016) Heart disease and stroke statistics—2016 update. Circulation 133(4):e38–e60

    Article  PubMed  Google Scholar 

  • Nadlonek NA, Weyant MJ, Jessica AY, Cleveland JC, Reece TB, Meng X, Fullerton DA (2012) Radiation induces osteogenesis in human aortic valve interstitial cells. J Thorac Cardiovasc Surg 144(6):1466–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadlonek NA, Lee JH, Weyant MJ, Meng X, Fullerton DA (2013a) ox-LDL induces PiT-1 expression in human aortic valve interstitial cells. J Surg Res 184(1):6–9

    Article  CAS  PubMed  Google Scholar 

  • Nadlonek N, Lee JH, Reece TB, Weyant MJ, Cleveland JC, Meng X, Fullerton DA (2013b) Interleukin-1 Beta induces an inflammatory phenotype in human aortic valve interstitial cells through nuclear factor kappa Beta. Ann Thorac Surg 96(1):155–162

    Article  PubMed  Google Scholar 

  • Nagy E, Bäck M (2012) Epigenetic regulation of 5-lipoxygenase in the phenotypic plasticity of valvular interstitial cells associated with aortic valve stenosis. FEBS Lett 586(9):1325–1329

    Article  CAS  PubMed  Google Scholar 

  • Ng LJ, Wheatley S, Muscat GE, Conway-Campbell J, Bowles J, Wright E, Bell DM, Tam PP, Cheah KS, Koopman P (1997) SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. Dev Biol 183(1):108–121

    Article  CAS  PubMed  Google Scholar 

  • Nomura A, Seya K, Yu Z, Daitoku K, Motomura S, Murakami M, Fukuda I, Furukawa KI (2013) CD34-negative mesenchymal stem-like cells may act as the cellular origin of human aortic valve calcification. Biochem Biophys Res Commun 440(4):780–785

    Article  CAS  PubMed  Google Scholar 

  • Okada K, Marubayashi S, Fukuma K, Yamada K, Dohi K (2000) Effect of the 21-aminosteroid on nuclear factor-κB activation of Kupffer cells in endotoxin shock. Surgery 127(1):79–86

    Article  CAS  PubMed  Google Scholar 

  • Osako MK, Nakagami H, Shimamura M, Koriyama H, Nakagami F, Shimizu H, Miyake T, Yoshizumi M, Rakugi H, Morishita R (2013) Cross-talk of receptor activator of nuclear factor-κB ligand signaling with renin-angiotensin system in vascular calcification significance. Arterioscler Thromb Vasc Biol 33(6):1287–1296

    Article  CAS  PubMed  Google Scholar 

  • Osman L, Yacoub MH, Latif N, Amrani M, Chester AH (2006) Role of human valve interstitial cells in valve calcification and their response to atorvastatin. Circulation 114(suppl 1):I-547

  • Osman N, Grande-Allen KJ, Ballinger ML, Getachew R, Marasco S, O’Brien KD, Little PJ (2013) Smad2-dependent glycosaminoglycan elongation in aortic valve interstitial cells enhances binding of LDL to proteoglycans. Cardiovasc Pathol 22(2):146–155

    Article  CAS  PubMed  Google Scholar 

  • Passmore M, Nataatmadja M, Fung YL, Pearse B, Gabriel S, Tesar P, Fraser JF (2015) Osteopontin alters endothelial and valvular interstitial cell behaviour in calcific aortic valve stenosis through HMGB1 regulation. Eur J Cardiothorac Surg 48(3):e20–e29

    Article  PubMed  Google Scholar 

  • Peacock JD, Levay AK, Gillaspie DB, Tao G, Lincoln J (2010) Reduced sox9 function promotes heart valve calcification phenotypes in vivo. Circ Res 106(4):712–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peltonen T, Ohukainen P, Ruskoaho H, Rysä J (2017) Targeting vasoactive peptides for managing calcific aortic valve disease. Ann Med 49(1):63–74

    Article  CAS  PubMed  Google Scholar 

  • Persy V, D’Haese P (2009) Vascular calcification and bone disease: the calcification paradox. Trends Mol Med 15(9):405–416

    Article  CAS  PubMed  Google Scholar 

  • Poggio P, Sainger R, Branchetti E, Grau JB, Lai EK, Gorman RC, Sacks MS, Parolari A, Bavaria JE, Ferrari G (2013) Noggin attenuates the osteogenic activation of human valve interstitial cells in aortic valve sclerosis. Cardiovasc Res 98(3):402–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poggio P, Branchetti E, Grau JB, Lai EK, Gorman RC, Gorman JH, Sacks MS, Bavaria JE, Ferrari G (2014) Osteopontin–CD44v6 interaction mediates calcium deposition via phospho-Akt in valve interstitial cells from patients with noncalcified aortic valve sclerosis significance. Arterioscler Thromb Vasc Biol 34(9):2086–2094

    Article  CAS  PubMed  Google Scholar 

  • Qian S, Regan JN, Shelton MT, Hoggatt A, Mohammad KS, Herring PB, Seye CI (2017) The P2Y 2 nucleotide receptor is an inhibitor of vascular calcification. Atherosclerosis 257: 38–36

    Article  CAS  PubMed  Google Scholar 

  • Quinlan AM, Billiar KL (2012) Investigating the role of substrate stiffness in the persistence of valvular interstitial cell activation. J Biomed Mater Res Part A 100(9):2474–2482

    Google Scholar 

  • Rajamannan NM (2011) The role of Lrp5/6 in cardiac valve disease: experimental hypercholesterolemia in the ApoE−/−/Lrp5−/− mice. J Cell Biochem 112(10):2987–2991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajamannan NM, Subramaniam M, Rickard D, Stock SR, Donovan J, Springett M, Orszulak T, Fullerton DA, Tajik AJ, Bonow RO, Spelsberg T (2003) Human aortic valve calcification is associated with an osteoblast phenotype. Circulation 107(17):2181–2184

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajamannan NM, Bonow RO, Rahimtoola SH (2007) Calcific aortic stenosis: an update. Nat Clin Pract Cardiovasc Med 4(5):254–262

    Article  CAS  PubMed  Google Scholar 

  • Reeves EK, Hoffman EP, Nagaraju K, Damsker JM, McCall JM (2013) VBP15: preclinical characterization of a novel anti-inflammatory delta 9, 11 steroid. Bioorg Med Chem 21(8):2241–2249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rickelt S, Rizzo S, Doerflinger Y, Zentgraf H, Basso C, Gerosa G, Thiene G, Moll R, Franke WW (2010) A novel kind of tumor type-characteristic junction: plakophilin-2 as a major protein of adherens junctions in cardiac myxomata. Mod Pathol 23(11):1429–1437

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Brand NJ, Yacoub MH (2000) Molecular characterization of interstitial cells isolated from human heart valves. J Heart Valve Dis 9(3):459–464

    CAS  PubMed  Google Scholar 

  • Rush MN, Coombs KE, Hedberg-Dirk EL (2015) Surface chemistry regulates valvular interstitial cell differentiation in vitro. Acta Biomater 28:76–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto Y, Buchanan RM, Sacks MS (2016) On intrinsic stress fiber contractile forces in semilunar heart valve interstitial cells using a continuum mixture model. J Mech Behav Biomed Mater 54:244–258

    Article  PubMed  Google Scholar 

  • Sakamoto Y, Buchanan RM, Sanchez-Adams J, Guilak F, Sacks MS (2017) On the functional role of valve interstitial cell stress fibers: A continuum modeling approach. J Biomech Eng 139(2). doi:10.1115/1.4035557

  • Sant S, Iyer D, Gaharwar AK, Patel A, Khademhosseini A (2013) Effect of biodegradation and de novo matrix synthesis on the mechanical properties of valvular interstitial cell-seeded polyglycerol sebacate–polycaprolactone scaffolds. Acta Biomater 9(4):5963–5973

    Article  CAS  PubMed  Google Scholar 

  • Saremi A, Bahn G, Reaven PD (2012) VADT Investigators. Progression of vascular calcification is increased with statin use in the Veterans Affairs Diabetes Trial (VADT). Diabetes Care 35(11):2390–2392

    Article  PubMed  PubMed Central  Google Scholar 

  • Schoen FJ, Gotlieb AI (2016) Heart valve health, disease, replacement, and repair: a 25-year cardiovascular pathology perspective. Cardiovasc Pathol 25(4):341–352

    Article  PubMed  Google Scholar 

  • Shimizu T, Tanaka T, Iso T, Matsui H, Ooyama Y, Kawai-Kowase K, Arai M, Kurabayashi M (2011) Notch signaling pathway enhances bone morphogenetic protein 2 (BMP2) responsiveness of Msx2 gene to induce osteogenic differentiation and mineralization of vascular smooth muscle cells. J Biol Chem 286(21):19138–19148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmons CA, Grant GR, Manduchi E, Davies PF (2005) Spatial heterogeneity of endothelial phenotypes correlates with side-specific vulnerability to calcification in normal porcine aortic valves. Circ Res 96(7):792–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y, Fullerton DA, Mauchley D, Su X, Ao L, Yang X, Cleveland JC, Meng X (2011) Microfilaments facilitate TLR4-mediated ICAM-1 expression in human aortic valve interstitial cells. J Surg Res 166(1):52–58

    Article  CAS  PubMed  Google Scholar 

  • Song R, Fullerton DA, Ao L, Zheng D, Zhao KS, Meng X (2015) BMP-2 and TGF-β1 mediate biglycan-induced pro-osteogenic reprogramming in aortic valve interstitial cells. J Mol Med 93(4):403–412

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Zhao R, Yang Y, Wang H, Shao Y, Kong X (2013) Comparative study of human aortic and mitral valve interstitial cell gene expression and cellular function. Genomics 101(6):326–335

    Article  CAS  PubMed  Google Scholar 

  • Sun F, Shi J, Chen S, Deng C, Hu X, Li H, Li G, Liu Y, Dong N (2015) Lazaroid U-74389G inhibits the osteoblastic differentiation of IL-1β-induced aortic valve interstitial cells through glucocorticoid receptor and inhibition of NF-κB pathway. J Ster Biochem Mol Biol 152:114–123

    Article  CAS  Google Scholar 

  • Sung DC, Bowen CJ, Vaidya KA, Zhou J, Chapurin N, Recknagel A, Zhou B, Chen J, Kotlikoff M, Butcher JT (2016) Cadherin-11 overexpression induces extracellular matrix remodeling and calcification in mature aortic valves. Arteriosclerosis, thrombosis, and vascular biology. ATVBAHA-116

  • Suzuki K, Takahashi S, Watanabe K, Fujioka D, Nakamura T, Obata JE, Kawabata KI, Katoh R, Matsumoto M, Kugiyama K (2014) The expression of groups IIE and V phospholipase A2 is associated with an increased expression of osteogenic molecules in human calcified aortic valves. J Atheroscler Thromb 21(12):1308–1325

    Article  CAS  PubMed  Google Scholar 

  • Swindle MM, Makin A, Herron AJ, Clubb FJ, Frazier KS (2012) Swine as models in biomedical research and toxicology testing. Vet Pathol Online 49(2):344–356

    Article  CAS  Google Scholar 

  • Tandon I, Razavi A, Ravishankar P, Walker A, Sturdivant NM, Lam NT, Wolchok JC, Balachandran K (2016) Valve interstitial cell shape modulates cell contractility independent of cell phenotype. J Biomech 49(14):3289–3297

    Article  PubMed  Google Scholar 

  • Taylor PM, Batten P, Brand NJ, Thomas PS, Yacoub MH (2003) The cardiac valve interstitial cell. Int J Biochem Cell Biol 35(2):113–118

    Article  CAS  PubMed  Google Scholar 

  • Thayer P, Balachandran K, Rathan S, Yap CH, Arjunon S, Jo H, Yoganathan AP (2011) The effects of combined cyclic stretch and pressure on the aortic valve interstitial cell phenotype. Ann Biomed Eng 39(6):1654–1667

    Article  PubMed  PubMed Central  Google Scholar 

  • Treuting PM, Dintzis SM (2011) (eds) Comparative anatomy and histology: a mouse and human atlas (expert consult), 1st edn. Academic Press

  • Wahlin B, Meedt T, Jonsson F, Henein MY, Wållberg-Jonsson S (2016) Coronary artery calcification is related to inflammation in rheumatoid arthritis: a long-term follow-up study. BioMed Res Int. doi:10.1155/2016/1261582

    PubMed  PubMed Central  Google Scholar 

  • Wang H, Tibbitt MW, Langer SJ, Leinwand LA, Anseth KS (2013) Hydrogels preserve native phenotypes of valvular fibroblasts through an elasticity-regulated PI3K/AKT pathway. Proc Natl Acad Sci 110(48):19336–19341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Li F, Zhang C, Wei G, Liao P, Dong N (2016) High-mobility group box-1 protein induces osteogenic phenotype changes in aortic valve interstitial cells. J Thorac Cardiovasc Surg 151(1):255–262

    Article  CAS  PubMed  Google Scholar 

  • Weiss RM, Lund DD, Chu Y, Brooks RM, Zimmerman KA, El Accaoui R, Davis MK, Hajj GP, Zimmerman MB, Heistad DD (2013) Osteoprotegerin inhibits aortic valve calcification and preserves valve function in hypercholesterolemic mice. PLoS One 8(6):e65201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White MP, Theodoris CV, Liu L, Collins WJ, Blue KW, Lee JH, Meng X, Robbins RC, Ivey KN, Srivastava D (2015) NOTCH1 regulates matrix gla protein and calcification gene networks in human valve endothelium. J Mol Cell Cardiol 84:13–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wirrig EE, Hinton RB, Yutzey KE (2011) Differential expression of cartilage and bone-related proteins in pediatric and adult diseased aortic valves. J Mol Cell Cardiol 50(3):561–569

    Article  CAS  PubMed  Google Scholar 

  • Wirrig EE, Gomez MV, Hinton RB, Yutzey KE (2015) COX2 inhibition reduces aortic valve calcification in vivo. Arteriosclerosis, thrombosis, and vascular biology. ATVBAHA-114

  • Witt W, Jannasch A, Burkhard D, Christ T, Ravens U, Brunssen C, Leuner A, Morawietz H, Matschke K, Waldow T (2012) Sphingosine-1-phosphate induces contraction of valvular interstitial cells from porcine aortic valves. Cardiovasc Res 93(3):490–497

    Article  CAS  PubMed  Google Scholar 

  • Witt W, Büttner P, Jannasch A, Matschke K, Waldow T (2014) Reversal of myofibroblastic activation by polyunsaturated fatty acids in valvular interstitial cells from aortic valves. Role of RhoA/G-actin/MRTF signalling. J Mol Cell Cardiol 74:127–138

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Wang Y, Xiao F, Butcher JT, Yutzey KE, Zhou B (2016) Developmental mechanisms of aortic valve malformation and disease. Annu Rev Physiol

  • Xie C, Shen Y, Hu W, Chen Z, Li Y (2016) Angiotensin II promotes an osteoblast-like phenotype in porcine aortic valve myofibroblasts. Aging Clin Exp Res 28(2):181–187

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Gotlieb AI (2013) Wnt3a/β-catenin increases proliferation in heart valve interstitial cells. Cardiovasc Pathol 22(2):156–166

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Liu AC, Kim H, Gotlieb AI (2012) Cell density regulates in vitro activation of heart valve interstitial cells. Cardiovasc Pathol 21(2):65–73

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Meng X, Su X, Mauchley DC, Ao L, Cleveland JC, Fullerton DA (2009a) Bone morphogenic protein 2 induces Runx2 and osteopontin expression in human aortic valve interstitial cells: role of Smad1 and extracellular signal-regulated kinase 1/2. J Thorac Cardiovasc Surg 138(4):1008–1015

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Fullerton DA, Su X, Ao L, Cleveland JC, Meng X (2009b) Pro-osteogenic phenotype of human aortic valve interstitial cells is associated with higher levels of Toll-like receptors 2 and 4 and enhanced expression of bone morphogenetic protein 2. J Am Coll Cardiol 53(6):491–500

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Seya K, Daitoku K, Motomura S, Fukuda I, Furukawa KI (2011) Tumor necrosis factor-α accelerates the calcification of human aortic valve interstitial cells obtained from patients with calcific aortic valve stenosis via the BMP2-Dlx5 pathway. J Pharmacol Exp Ther 337(1):16–23

    Article  CAS  PubMed  Google Scholar 

  • Zeng Q, Song R, Ao L, Weyant MJ, Lee J, Xu D, Fullerton DA, Meng X (2013) Notch1 promotes the pro-osteogenic response of human aortic valve interstitial cells via modulation of ERK1/2 and nuclear factor-κB activation significance. Arterioscler Thromb Vasc Biol 33(7):1580–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan JK, Tan P, Wang YJ, Wang Y, He JY, Tang ZY, Huang W, Liu YS (2014) Exenatide can inhibit calcification of human VSMCs through the NF-kappaB/RANKL signaling pathway. Cardiovasc Diabetol 13(1):153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang XW, Zhang BY, Wang SW, Gong DJ, Han L, Xu ZY, Liu XH (2014) Twist-related protein 1 negatively regulated osteoblastic transdifferentiation of human aortic valve interstitial cells by directly inhibiting runt-related transcription factor 2. J Thorac Cardiovasc Surg 148(4):1700–1708

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Rivkees SA (2000) Programmed cell death in the developing heart: regulation by BMP4 and FGF2. Dev Dyn 217(4):388–400

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Zhu J, Jiang L, Zhang B, Zhu D, Wu Y (2016) Interleukin 18 promotes myofibroblast activation of valvular interstitial cells. Int J Cardiol 221:998–1003

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Innovation Student Program (201430191040) to H.T., Z. M., N. L., Z. Z., the National Key Research and Development Program of China (2016YFD0501201) to Y. Y. and X. Y., Open Fund of National Laboratory of Subtropical Agriculture Ecology Process, Chinese Academy of Sciences (ISA2016204), and Xiaoxiang Endowed University Professor Fund of Hunan Normal University (No. 840140-008) to X.Y, Chinese Academy of Sciences Visiting Professorship for Senior International Scientists Grant (no. 2016VBB007) to C. A. H.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yulong Yin, Chien-An Andy Hu or Xiaoping Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statements

This review does not involve any human participants and animal work.

Additional information

Handling Editors: C.-A.A. Hu, Y. Yin, Y. Hou, G. Wu, Y. Teng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, C., Tang, H., Mei, Z. et al. Human interstitial cellular model in therapeutics of heart valve calcification. Amino Acids 49, 1981–1997 (2017). https://doi.org/10.1007/s00726-017-2432-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-017-2432-3

Keywords

Navigation