Skip to main content

Advertisement

Log in

The role of l-arginine-nitric oxide pathway in bacterial translocation

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

This study investigated the nitric oxide (NO) role as a mediator of arginine on bacterial translocation (BT) and gut damage in mice after intestinal obstruction (IO). The effects of pretreatment with arginine with or without NO inhibition on the systemic and local immunological response were also assessed. Mice were categorized into four groups. Group ARG received chow containing 2 % arginine, while group ARG + l-NAME received the same diet plus l-NAME (N-nitro-l-arginine methyl ester) by gavage. The IO and Sham groups were fed standard chow. After 7 days, animals were gavaged with radiolabeled Escherichia coli, anesthetized and subjected to IO, except the Sham group. Animals were euthanized after 18 h, and BT was evaluated in the mesenteric lymph nodes, blood, liver, spleen and lungs. In another experiment, the intestinal injury was assessed regarding intestinal permeability and ileum histological analyses. Intestinal secretory immunoglobulin A (sIgA) levels, serum IFN-γ and IL-10 cytokines were assessed. Arginine reduced BT, but NO inhibition enhanced BT compared with the ARG group (p < 0.05). Intestinal permeability in the ARG and ARG + l-NAME groups was similar but decreased when compared with the IO group (p < 0.05). Histological preservation was observed. Arginine treatment increased IL-10 and sIgA levels when compared with the Sham and IO groups (p < 0.05). The cytokines and sIgA concentrations were similar in the ARG + l-NAME and Sham groups. Arginine appeared to reduce BT and its effects on the modulation of cytokines and secretory IgA in mice after IO are mediated by NO production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Benbernou N, Esnault S, Shin HC, Fekkar H, Guenounou M (1997) Differential regulation of IFN-gamma, IL-10 and inducible nitric oxide synthase in human T cells by cyclic AMP-dependent signal transduction pathway. Immunology 91:361–368

    Article  PubMed  CAS  Google Scholar 

  • Biancofiore G, Bindi L, Miccoli M, Metelli MR, Panicucci E, Baggiani A, Filipponi F (2013) Balance of pro- and anti-inflammatory cytokines in cirrhotic patients undergoing liver transplantation. Transpl Immunol 28:193–197

    Article  PubMed  CAS  Google Scholar 

  • Brayden DJ, Jepson MA, Baird AW (2005) Intestinal Peyer’s patch M cells and oral vaccine targeting. Drug Discov Today 10:1145–1157

    Article  PubMed  CAS  Google Scholar 

  • Clayburgh DR, Shen L, Turner JR (2004) A porous defense: the leaky epithelial barrier in intestinal disease. Lab Invest 84:282–291

    Article  PubMed  CAS  Google Scholar 

  • Demirkiran AE, Balkaya M, Tuncyurek P, Cevikel MH, Culhaci N, Iyigor M, Ozgun H, Aydin N, Boylu S (2006) The effects of nitric oxide supplementation and inhibition on bacterial translocation in bile duct ligated rats. Acta Chir Belg 106:202–205

    PubMed  CAS  Google Scholar 

  • Ding L, Li J, Li Y, Zhu N, Liu F, Tan L (2004) Intestinal barrier damage caused by trauma and lipopolysaccharide. World J Gastroenterol 10:2373–2378

    PubMed  CAS  Google Scholar 

  • Diniz SOF, Resende BM, Nunan EA, Simal CJR, Cardoso VN (1999) 99mTechnetium labelled Escherichia coli. Appl Radiat Isto 51:33–36

    Article  CAS  Google Scholar 

  • Du Plessis J, Vanheel H, Janssen CEI, Roos L, Slavik T, Stivaktas PI, Nieuwoudt M, Wyk SGV, Vieira W, Pretorius E, Beukes M, Farré R, Tack J, Laleman W, Fevery J, Nevens F, Roskams T, Van der Merwe SW (2013) Activated intestinal macrophages in patients with cirrhosis release NO and IL-6 that may disrupt intestinal barrier function. J Hepatol 58:1125–1132

    Article  PubMed  Google Scholar 

  • Ersin S, Tuncyurek P, Esassolak M, Alkanat M, Buke C, Yilmaz M, Telefonuc A, Kose T (2000) The prophylactic and therapeutic effects of glutamine and arginine enriched diets on radiation induced enteritis in rats. J Surg Res 89:121–125

    Article  PubMed  CAS  Google Scholar 

  • Fan J, Meng Q, Guo G, Xie Y, Li X, Xiu Y, Li T, Ma L (2010) Effects of early enteral nutrition supplemented with arginine on intestinal mucosal immunity in severely burned mice. Clin Nutr 29:124–130

    Article  PubMed  CAS  Google Scholar 

  • Hajishengallis G, Nikolova E, Russell MW (1992) Inhibition of Streptococcus mutans adherence to saliva-coated hydroxyapatite by human secretory immunoglobulin A (S-IgA) antibodies to cell surface protein antigen I/II: reversal by IgA1 protease cleavage. Infect Immun 60:5057–5064

    PubMed  CAS  Google Scholar 

  • Heyland DK, Novak F, Drover JW, Jain M, Su X, Suchner U (2001) Should immunonutrition become routine in critically ill patients? A systematic review of the evidence. JAMA 286:944–953

    Article  PubMed  CAS  Google Scholar 

  • Ibiza S, Serrador JM (2008) The role of nitric oxide in the regulation of adaptive immune responses. Inmunología 27:103–117

    Article  Google Scholar 

  • Izcue A, Coombes JL, Powrie F (2009) Regulatory lymphocytes and intestinal inflammation. Annu Rev Immunol 27:313–338

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Yamamoto M, Hiroi T, Mcghee J, Takeshita Y, Kiyono H (1998) Arginine enhances induction of T helper 1 and T helper 2 cytokine synthesis by Peyer’s patch alpha beta T cells and antigen-specific mucosal immune response. Biosci Biotechnol Biochem 62:2334–2340

    Article  PubMed  CAS  Google Scholar 

  • Koppelmann T, Pollak Y, Mogilner J, Bejar J, Coran AG, Sukhotnik I (2012) Dietary l-arginine supplementation reduces methotrexate-induced intestinal mucosal injury in rat. BMC Gastroenterol 12:41

    Article  PubMed  CAS  Google Scholar 

  • Kung SP, Wu CW, Lui WY (2001) Arginine modulated cyclosporine induced immune suppression in rats transplanted with gastric cancer cells. In Vivo 15:39–44

    PubMed  CAS  Google Scholar 

  • Manzanares W, Heyland DK (2012) Pharmaconutrition with arginine decreases bacterial translocation in an animal model of severe trauma. Is a clinical studied justified? The time is now! Crit Care Med 40:350–352

    Article  PubMed  Google Scholar 

  • Miki S, Takeyama N, Tanaka T, Nakatani T (2005) Immune dysfunction in endotoxicosis: role of nitric oxide produced by inducible nitric oxide synthase. Crit Care Med 33:716–720

    Article  PubMed  CAS  Google Scholar 

  • Moinard C, Barbar S, Choisy C, Butel MJ, Bureau MF, Hasselmann M, Cynober L (2012) Arginine reduces bacterial invasion in rats with head injury: an in vivo evaluation by bioluminescence. Crit Care Med 40:278–280

    Article  PubMed  CAS  Google Scholar 

  • Nadler EP, Ford HR (2000) Regulation of bacterial translocation by nitric oxide. Pediatr Surg Int 16:165–168

    Article  PubMed  CAS  Google Scholar 

  • Ochoa JB, Strange J, Kearney P, Gellin G, Endean E, Fitzpatrick E (2001) Effects of l-arginine on the proliferation of T lymphocyte subpopulations. JPEN 25:23–29

    Article  CAS  Google Scholar 

  • Osowska S, Neveux N, Nakib S, Lasserre V, Cynober L, Moinard C (2008) Impairment of arginine metabolism in rats after massive intestinal resection: effect of parenteral nutrition supplemented with citrulline compared with arginine. Clin Sci(Lond) 115(5):159–166

    Google Scholar 

  • Quirino IEP, Correia MITD, Cardoso VN (2007) The impact of arginine on bacterial translocation in an intestinal obstruction model in rats. Clin Nutr 26:335–340

    Article  PubMed  CAS  Google Scholar 

  • Rhoads JM, Wu G (2009) Glutamine, arginine and leucine signaling in the intestine. Amino Acids 37:111–122

    Article  CAS  Google Scholar 

  • Rodrigues ACP, Cara DC, Fretez SHG, Cunha FQ, Vieira EC, Nicoli JR (2000) Saccharomyces boulardii stimulates sIgA production and the phagocytic system of gnotobiotic mice. J Appl Microbiol 89:404–414

    Article  PubMed  CAS  Google Scholar 

  • Roozendaal R, Vellenga E, Postma DS, De Monchy JG, Kauffman HF (1999) Nitric oxide selectively decreases interferon gamma expression by activated human T lymphocytes via a cGMP independent mechanism. Immunology 98:393–399

    Article  PubMed  CAS  Google Scholar 

  • Samel S, Keese M, Laning S, Kleczka M, Gretz N, Hafner M, Sturm J, Post S (2003) Supplementation and inhibition of nitric oxide synthesis influences bacterial transit time during bacterial translocation in rats. Shock 19:378–382

    Article  PubMed  CAS  Google Scholar 

  • Shanahan F (2002) The host–microbe interface within the gut. Best Pract Res Clin Gastroenterol 16:915–930

    Article  PubMed  Google Scholar 

  • Shang HF, Wang YY, Lai YN, Chiu WC, Yeh SL (2004) Effects of arginine supplementation on mucosal immunity in rats with septic peritonitis. Clin Nutr 23:561–569

    Article  PubMed  CAS  Google Scholar 

  • Sukhotnik I, Mogilner J, Krausz MM, Lurie M, Hirsh M, Coran AG, Shiloni E (2004) Oral arginine reduces gut mucosal injury caused by lipopolysaccharide in rat. J Surg Res 122:256–262

    Article  PubMed  CAS  Google Scholar 

  • Tanaka A, Mizoguchi H, Kunikata T, Miyazawa T, Takeuchi K (2001) Protection by constitutively formed nitric oxide of intestinal damage induced by indomethacin in rats. J Physiol 95:35–41

    CAS  Google Scholar 

  • Van Der Veen R (2001) Nitric oxide and T helper cell immunity. Int Immunopharmacol 1:1491–1500

    Article  PubMed  Google Scholar 

  • Viana ML, Santos RG, Generoso SV, Arantes RME, Correia MITD, Cardoso VN (2010) Pretreatment with arginine preserves intestinal barrier integrity and reduces bacterial translocation in mice. Nutrition 26:218–223

    Article  PubMed  CAS  Google Scholar 

  • Wiley JW (2007) The many faces of nitric oxide: cytotoxic, cytoprotective or both. Neurogastroenterol Motil 19:541–544

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Chiu H, Peng W, Lin B, Lu K, Lu Y, Yu LC (2011) Epithelial inducible nitric oxide synthase causes bacterial translocation by impairment of enterocytic tight junctions via intracellular signals of Rho-associated kinase and protein kinase C zeta. Crit Care Med 39:2087–2098

    Article  PubMed  CAS  Google Scholar 

  • Zulfikaroglu B, Zufikaroglu E, Ozmen MM, Berkem R, Erdogan S, Besler HT, Koc M, Korkmaz A (2003) The effect of immunonutrition on bacterial translocation, and intestinal villus atrophy in experimental obstructive jaundice. Clin Nutr 22:277–281

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by grants from Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and Conselho Nacional de Pesquisa (CNPq).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirelle Lomar Viana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viana, M.L., dos Santos, R.d.G.C., Generoso, S.d.V. et al. The role of l-arginine-nitric oxide pathway in bacterial translocation. Amino Acids 45, 1089–1096 (2013). https://doi.org/10.1007/s00726-013-1558-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-013-1558-1

Keywords

Navigation