Skip to main content
Log in

Nuclear Magnetic Resonance and X-ray Reflectometry of Co/Cu Superlattices

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The state of interfaces in Co/Cu superlattices with various thicknesses of non-magnetic Cu layers (tcu) has been studied by the methods of nuclear magnetic resonance (NMR) and X-ray reflectometry. The samples glass/Fe(5 nm)/[Co(1.5 nm)/Cu(tcu)]10/Cr(3 nm) were fabricated by the method of magnetron sputtering on glass substrates under constant current in the ULVAC MPS-4000-C6 device. The 59Co NMR spectra were taken in a local magnetic field in the frequency range of 90–240 MHz at 4.2 K in the pulsed NMR spectrometer. The spin echo signal was formed by a sequence of two coherent radio-frequency pulses (τp)x − tdel − (τp)y − tdel – echo forming an alternate magnetic field with the round component amplitude H1 of about 10 Oe in a resonance coil. It has been shown both by NMR and X-ray reflectometry that the structure of interfaces deteriorates with an increase of the Cu layers thickness, and similar dependences of the parameters characterizing structural imperfection of interfaces were obtained by these two methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Wetzig, C.M. Schneider, in Metal Based Thin Films for Electronics, (Wiley VCH, Weinheim, 2003), p. 388

    Book  Google Scholar 

  2. J.C. Mallinson, Magneto-Resistive and Spin Valve Heads: Fundamentals and Applications, 2nd edn. (Academic Press, San Diego, 2002)

    Book  Google Scholar 

  3. C.H. Marrows, N. Wiser, B.J. Hickey, T.P.A. Hase, B.K. Tanner, J. Phys. 11, 81–88 (1999)

    Google Scholar 

  4. M. Vopsaroiu, D. Bozec, J.A.D. Matthew, S.M. Thompson, C.H. Marrows, M. Perez, Phys. Rev. B 70, 214423-1–214423-7 (2004)

    Article  ADS  Google Scholar 

  5. D. Elefant, D. Tietjen, L. van Loyen, I. Moench, C.M. Schneider, J. Appl. Phys. 89, 7118–7120 (2001)

    Article  ADS  Google Scholar 

  6. E.E. Fullerton, I.K. Schuller, H. Vanderstraeten, Y. Bruynseraede, Phys. Rev. B 45, 9292 (1992)

    Article  ADS  Google Scholar 

  7. N.V. Kourtina, E.A. Kravtsov, V.V. Ustinov, J. Magn. Magn. Mater. 240, 494 (2002)

    Article  ADS  Google Scholar 

  8. C. Meny, P. Panissod, R. Loloee, Phys. Rev. B 45, 12269 (1992)

    Article  ADS  Google Scholar 

  9. T. Thomson, P.C. Riedi, Hyp. Interact. 120, 20 (1999)

    ADS  Google Scholar 

  10. D. Khalyapin, V.K. Maltsev, P.D. Kim, I.A. Turpanov, A.Ya. Betenkova, J. Sib. Fed. Univ. 3, 70 (2010)

    Google Scholar 

  11. S.A. Chuprakov, T.P. Krinitsina, N.S. Bannikova, I.V. Blinov, S.V. Verkhovskii, M.A. Milyaev, V.V. Popov, V.V. Ustinov, Sol. State Phenom. 215, 358 (2014)

    Article  Google Scholar 

  12. S.A. Chuprakov, N.S. Bannikova, I.V. Blinov, T.P. Krinitsina, M.A. Milyaev, V.V. Popov, V.V. Ustinov, Phys. Met. Metallogr. 116, 136 (2015)

    Article  ADS  Google Scholar 

  13. H.A.M. Gronckel, K. Kopinga, W.J.M. Jonge, P. Panissod, J.P. Schille, F.J.A. Broeder, Phys. Rev. B 44, 9100 (1991)

    Article  ADS  Google Scholar 

  14. E. Jedryka, M. Wojcik, S. Nadolski, D.J. Kubinski, H. Holloway, P. Panisod, J. Appl. Phys. 81, 4776 (1997)

    Article  ADS  Google Scholar 

  15. K. Dang, P. Veillet, H. He, F.J. Lamelas, C.H. Lee, R. Clarke, Phys. Rev. B 41, 12902 (1990)

    Article  ADS  Google Scholar 

  16. M. Suzuki, Y. Taga, A. Goto, H. Yasuoka, Phys. Rev. B 50, 18580 (1994)

    Article  ADS  Google Scholar 

  17. Y. Saito, K. Inomata, K. Yusu, A. Goto, H. Yasuoka, Phys. Rev. B 52, 6500 (1995)

    Article  ADS  Google Scholar 

  18. S.A. Chuprakov, N.S. Bannikova, I.V. Blinov, T.P. Krinitsina, M.A. Milyaev, V.V. Popov, M.V. Ryabukhina, V.V. Ustinov, Phys. Met. Metallogr. 119, 309 (2018)

    Article  ADS  Google Scholar 

  19. ​S.S.P. Parkin, Z.G. Li, D.J. Smith, Appl. Phys. Lett. 58, 2710 (1991)

    Article  ADS  Google Scholar 

  20. S. Heitmann. Ph.D. Thesis. University of Bielefeld; Bielefeld, Germany (2004)

  21. Y. Saito, S. Hashimoto, K. Inomata, IEEE Trans. Magn. 28, 2751 (1992)

    Article  ADS  Google Scholar 

  22. W. Kuch, A.C. Marley, S.S.P. Parkin, J. Appl. Phys. 83, 4709 (1998)

    Article  ADS  Google Scholar 

  23. M.R. Parker, S. Hossain, D. Seale, J.A. Barnard, M. Tan, H. Fujiwara, IEEE Trans. Magn. 30, 358 (1994)

    Article  ADS  Google Scholar 

  24. S. Nasu, H. Yasuoka, Y. Nakamura, Y. Murakami, Acta Metall. 22, 1057 (1974)

    Article  Google Scholar 

Download references

Acknowledgements

The work has been done within the State Program “Spin” (No AAAA-A18-118020290104-2) and the Program of Fundamental Research of the Ural Branch of the Russian Academy of Sciences (Project No. 18–10–2–37).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Chuprakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuprakov, S.A., Bannikova, N.S., Blinov, I.V. et al. Nuclear Magnetic Resonance and X-ray Reflectometry of Co/Cu Superlattices. Appl Magn Reson 50, 415–423 (2019). https://doi.org/10.1007/s00723-018-1090-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-1090-2

Navigation