Skip to main content
Log in

Room-Temperature Level Anticrossing and Cross-Relaxation Spectroscopy of Spin Color Centers in SiC Single Crystals and Nanostructures

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

A sharp variation of the near infrared photoluminescence intensity for spin-3/2 color centers in hexagonal (4H-, 6H-) and rhombic (15R-) SiC polytypes in the vicinity of level anticrossing (LAC) and cross-relaxation in an external magnetic field at room temperature are observed. This effect can be used for a purely all-optical sensing of the magnetic field with nanoscale spatial resolution. A distinctive feature of the LAC signal is a weak dependence on the magnetic field direction that allows monitoring of the LAC signals in the nonoriented systems, such as powder materials, without need to determine the nanocrystal orientation in the sensing measurements. Furthermore, an LAC-like signal is also observed for the spin color centers (NV centers) in diamond in low magnetic fields with only marginal dependence on the magnetic field direction. This effect is enabled to detect weak magnetic fields using nanodiamond samples in the form of disordered mixture. In addition, the optically detected magnetic resonance and LAC techniques are suggested to serve as a simple method to determine the local stress in nanodiamonds under ambient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. von Borczyskowski, Science 276, 2012–2014 (1997)

    Article  Google Scholar 

  2. D. Riedel, F. Fuchs, H. Kraus, S. Väth, A. Sperlich, V. Dyakonov, A.A. Soltamova, P.G. Baranov, V.A. Ilyin, G.V. Astakhov, Phys. Rev. Lett. 109, 226402 (2012)

    Article  ADS  Google Scholar 

  3. H. Kraus, V.A. Soltamov, D. Riedel, S. Väth, F. Fuchs, A. Sperlich, P.G. Baranov, V. Dyakonov, G.V. Astakhov, Nat. Phys. 10, 157–162 (2014)

    Article  Google Scholar 

  4. A. Muzha, F. Fuchs, N.V. Tarakina, M. Trupke, V.A. Soltamov, E.N. Mokhov, P.G. Baranov, V. Dyakonov, A. Krueger, G.V. Astakhov, Appl. Phys. Lett. 105, 243112 (2014)

    Article  ADS  Google Scholar 

  5. P.G. Baranov, A.P. Bundakova, A.A. Soltamova, S.B. Orlinskii, I.V. Borovykh, R. Zondervan, R. Verberk, J. Schmidt, Phys. Rev. B 83, 125203 (2011)

    Article  ADS  Google Scholar 

  6. P.G. Baranov, V.A. Soltamov, A.A. Soltamova, G.V. Astakhov, V.V. Dyakonov, in Silicon Carbide and Related Materials, Mater. Sci. Forum, vol. 740742, pp. 425–430 (2013)

  7. V.A. Soltamov, B.V. Yavkin, D.O. Tolmachev, R.A. Babunts, A.G. Badalyan, VYu. Davydov, E.N. Mokhov, I.I. Proskuryakov, S.B. Orlinskii, P.G. Baranov, Phys. Rev. Lett. 115, 247602 (2015)

    Article  ADS  Google Scholar 

  8. D. Simin, V.A. Soltamov, A.V. Poshakinskiy, A.N. Anisimov, R.A. Babunts, D.O. Tolmachev, E.N. Mokhov, M. Trupke, S.A. Tarasenko, A. Sperlich, P.G. Baranov, V. Dyakonov, G.V. Astakhov, Phys. Rev. X 6, 031014 (2016)

    Google Scholar 

  9. A.N. Anisimov, D. Simin, V.A. Soltamov, S.P. Lebedev, P.G. Baranov, G.V. Astakhov, V. Dyakonov, Nat. Sci. Rep. 6, 33301 (2016)

    Article  ADS  Google Scholar 

  10. A.N. Anisimov, R.A. Babunts, S.V. Kidalov, E.N. Mokhov, V.A. Soltamov, P.G. Baranov, JETP Lett. 104, 82–87 (2016)

    Article  ADS  Google Scholar 

  11. G.V. Astakhov, D. Simin, V. Dyakonov, B.V. Yavkin, S.B. Orlinskii, I.I. Proskuryakov, A.N. Anisimov, V.A. Soltamov, P.G. Baranov, Appl. Magn. Reson. 47, 793–812 (2016)

    Article  Google Scholar 

  12. S.V. Anishchik, V.G. Vins, A.P. Yelisseyev, N.N. Lukzen, N.L. Lavrik, V.A. Bagryansky, New J. Phys. 17, 023040 (2015)

    Article  ADS  Google Scholar 

  13. S.V. Kidalov, F.M. Shakhov, A. Ya Vul’, A.N. Ozerin, Diamond Relat. Mater. 19, 976 (2010)

    Article  ADS  Google Scholar 

  14. P.G. Baranov, A.A. Soltamova, D.O. Tolmachev, N.G. Romanov, R.A. Babunts, F.M. Shakhov, S.V. Kidalov, A. Ya Vul’, G.V. Mamin, S.B. Orlinski, N.I. Silkin, Small 7, 1533–1537 (2011)

    Article  Google Scholar 

  15. W. Hanle, Z. Phys. 30, 93 (1924)

    Article  ADS  Google Scholar 

  16. P.G. Baranov, N.G. Romanov, Appl. Magn. Reson. 21, 165 (2001)

    Article  Google Scholar 

  17. W.J. Baker, K. Ambal, D.P. Waters, R. Baarda, H. Morishita, K. van Schooten, D.R. McCamey, J.M. Lupton, C. Boehme, Nat. Commun. 3, 898 (2012)

    Article  Google Scholar 

  18. C. Bradac, T. Gaebel, N. Naidoo, M.J. Sellars, J. Twamley, L.J. Brown, A.S. Barnard, T. Plakhotnik, A.V. Zvyagin, J.R. Rabeau, Nat. Nanotechnol. 5, 345 (2010)

    Article  ADS  Google Scholar 

  19. V.S. Vainer, V.A. Il’in, Sov. Phys. Solid State 23, 2126 (1981). [Fiz. Tverd. Tela 23, 3659 (1981)]

    Google Scholar 

  20. N.M. Pavlov, M.I. Iglitsyn, M.G. Kosaganova, V.N. Solomatin, Sov. Phys. Semicond. 9, 845 (1975). [Fiz. Tekh. Poluprovodn. 9, 1279 (1975)]

    Google Scholar 

Download references

Acknowledgements

This work has been supported by Russian Science Foundation under Agreement no. 16-42-01098, and the Russian Foundation for Basic Research (project nos. 16-02-00877 and 16-52-76017 ERA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Anisimov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anisimov, A.N., Soltamov, V.A., Mokhov, E.N. et al. Room-Temperature Level Anticrossing and Cross-Relaxation Spectroscopy of Spin Color Centers in SiC Single Crystals and Nanostructures. Appl Magn Reson 49, 85–95 (2018). https://doi.org/10.1007/s00723-017-0938-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-017-0938-1

Navigation