Skip to main content
Log in

Comparison of the Effects of Different 19F π Pulses on the Sensitivity and Phaseability of the 19F-13C HSQC

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The 19F-13C heteronuclear single quantum coherence (HSQC) experiment is vital for the structural elucidation of polyfluorinated organic species, yet its sensitivity and phaseability are limited by difficulties in uniform excitation of the widely disperse 19F spectral window. Adiabatic pulses of different types have previously been employed to generate effective π pulses for inversion and refocussing, but a systematic comparison of various adiabatic and other inversion pulses has not been published. In this work, it was observed that the use of a broadband inversion pulse (BIP) during the t 1 evolution period resulted in properly phaseable spectra for experiments optimized to detect 1 J CF, in contrast to CHIRP or WURST adiabatic pulses. For the INEPT and reverse-INEPT transfer segments of the HSQC, optimal sensitivity for resonances distant from the transmitter frequency was afforded by optimized universal rotation (BURBOP) or CHIRP pulses. In HSQC experiments with delays optimized for two-bond correlations, only the use of BURBOP pulses in INEPT and reverse-INEPT sequences afforded spectra cleanly phaseable across the F 2 and F 1 spectral windows. This observation is supported by off-resonance pulsed field gradient spin-echo experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Wang, M. Sanchez-Rosello, J.L. Acena, C. del Pozo, A.E. Sorochinsky, S. Fustero, V.A. Soloshonok, H. Liu, Chem. Rev. 114, 4 (2014). doi:10.1021/cr4002879

    Google Scholar 

  2. D.W. Smith, S.T. Iacono, S.S. Iyer (eds.), Handbook of Fluoropolymer Science and Technology (Wiley, Hoboken, NJ, 2014)

    Google Scholar 

  3. H. C. Walther, G. A. Bell, J. L Howell, Chem. Industr. 135 (2013)

  4. Opteon® Mobile Refrigerants Website. https://www.chemours.com/businesses-and-products/fluoroproducts/opteon-yf/. Accessed 4 January 2017

  5. R.A. Newmark, R.J. Webb, J. Fluor. Chem. 126, 3 (2005). doi:10.1016/j.jfluchem.2004.12.012

    Article  Google Scholar 

  6. J. Battiste, R.A. Newmark, Prog. NMR Spect. 48, 1 (2006). doi:10.1016/j.pnmrs.2005.10.002

    Article  Google Scholar 

  7. P. L. Rinaldi, J. Baughman, L. Li, X. Li, L. Paudel, E. B. Twum, B. Zhang, E. F. McCord, F. J. Wyzgoski, eMagRes 2 (2013), 109-148. DOI: 10.1002/9780470034590.emrstm1301

  8. G. Bodenhausen, D.J. Ruben, Chem. Phys. Lett. 69, 1 (1980). doi:10.1016/0009-2614(80)80041-8

    Article  Google Scholar 

  9. A.A. Marchione, R.J. Dooley, B. Conklin, Magn. Reson. Chem. 52, 4 (2014). doi:10.1002/mrc.4052

    Article  Google Scholar 

  10. E. Kupce, R. Freeman, J. Magn. Reson. A 115, 2 (1995). doi:10.1006/jmra.1995.1179

    Article  Google Scholar 

  11. J.M. Boehlen, I. Burghardt, M. Rey, G. Bodenhausen, J. Magn. Reson. A. 90, 1 (1990). doi:10.1016/0022-2364(90)90377-L

    Google Scholar 

  12. B. Adams, Magn. Reson. Chem. 46(4), 377–380 (2008). doi:10.1002/mrc.2179

    Article  Google Scholar 

  13. T. E. Skinner, N. I. Gershenzon, M. Nimbalkar, W. Bermel, B. Luy, S. J. Glaser, arXiv.org, e-Print archive, Physics (Preprint), 2011, 1–26. arXiv:1111.6647v1

  14. T. E. Skinner, N. I. Gershenzon, M. Nimbalkar, W. Bermel, B. Luy, S. J. Glaser, J. Magn. Reson. 216 (2012). doi:10.1016/j.jmr.2012.01.005

  15. K. Kozbar, S. Ehni, T. E. Skinner, S. J. Glaser, B. Luy, J. Magn. Reson. 225 (2012). doi:10.1016/j.jmr.2012.09.013

  16. M.A. Smith, H. Hu, A.J. Shaka, J. Magn. Reson. 151, 2 (2001). doi:10.1006/jmre.2001.2364

    Article  Google Scholar 

  17. E.O. Stejskal, J.E. Tanner, J. Chem. Phys. 42, 1 (1965). doi:10.1063/1.1695690

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Dr. Clemens Anklin of Bruker-Biospin for the 150 kHz CHIRP pulse and a coded version of the double-echo HSQC, Dr. J. Michael Geckle of Bruker-Biospin for rendering the main HSQC sequence used here compatible with Icon automation, and Ms. Rebecca Dooley for helpful discussions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Marchione.

Electronic supplementary material

Below is the link to the electronic supplementary material.

723_2017_876_MOESM1_ESM.pdf

HSQC and spin-echo pulse sequences used in this study, coded for compatibility with Bruker TopSpin v3.2 and Varian VnmrJ v3.2A software, and the analogue of Fig. 5 with echo delay of 1.82 ms (PDF 315 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchione, A.A., Conklin, B. Comparison of the Effects of Different 19F π Pulses on the Sensitivity and Phaseability of the 19F-13C HSQC. Appl Magn Reson 48, 485–499 (2017). https://doi.org/10.1007/s00723-017-0876-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-017-0876-y

Keywords

Navigation