Skip to main content
Log in

Origin and evolution of the Masjed Daghi Cu-Au-Mo porphyry and gold epithermal vein system, NW Iran: constraints from fluid inclusions and sulfur isotope studies

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Masjed Daghi porphyry-epithermal Cu-Au-Mo deposit in the northern Arabian-Eurasian collision zone of the Alborz Magmatic Assemblage, NW Iran, is hosted by an early Miocene quartz monzodiorite to diorite intrusion that intruded Eocene volcanic rocks. Potassic, phyllic, argillic, and propylitic alterations associated with four stages of porphyry mineralization (I to IV) are distinguished. Late high-sulfidation epithermal veins of mainly quartz or quartz-barite are enclosed in concentric zones of advanced argillic, argillic, silicic, and propylitic alterations.

Poly-phase brine inclusions from the stage ΙΙ porphyry mineralization have homogenization temperatures (Th) between 305 and 600 ºC, with salinity from 30.2 to 73.9 wt% NaCl equivalent. Brines inclusions of stages ΙΙΙ and ΙV have Th from 192 to 466 ºC and salinity from 20.6 to 59.2 wt% NaCl equivalent. These brine inclusions were trapped with vapor-rich inclusions, which have Th from 122 to 318 ºC and low-moderate salinity of 0.3 to 22.3 wt% NaCl equivalent. Fluid inclusions from quartz and sphalerite in epithermal veins yielded Th ranges of 123–298 °C and 121–218 °C, and salinity ranges of 1.9–12.8 and 1.9–11.2 wt% NaCl equivalent, respectively. The δ34S values of sulfide minerals from stages ΙΙ and ΙΙΙ porphyry mineralization vary from + 0.9 to + 2.3‰, whereas the δ34S values of sulfides from the late epithermal veins range from + 1.2 to -1.1‰. These characteristics are consistent with a similar magmatic source for both the fluids of porphyry mineralization and subsequent high-sulfidation epithermal veins. The Masjed Daghi deposit that represents a telescoped porphyry-epithermal system of copper–gold mineralization in the center and peripherals of the early Miocene intrusive stocks shows both similarities and differences to other Tethyan deposits in the Alpine-Himalayan orogenic belt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data presented in the text of the article are fully available without restriction from authors upon request.

Code availability

Not applicable.

References

  • Agard P, Omrani J, Jolivet L, Mouthereau F (2005) Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. Int J Earth Sci 94:401–419

    Article  Google Scholar 

  • Agard P, Omrani J, Jolivet L, Whitechurch H, Vrielynck B, Spakman W, Monié P, Meyer B, Wortel R (2011) Zagros orogeny: a subduction-dominated process. Geological Mag 148:692–725

    Article  Google Scholar 

  • Aghanabati A (1986) Geological map of the Middle East. Geol Surv Iran

  • Aghazadeh M, Hou Z, Badrzadeh Z, Zhou L (2015) Temporal–spatial distribution and tectonic setting of porphyry copper deposits in Iran: constraints from zircon U-Pb and molybdenite Re–Os geochronology. Ore Geol Rev 70:385–406

    Article  Google Scholar 

  • Ahmad SN, Rose AW (1980) Fluid inclusions in porphyry and skarn ore at Santa Rita, New Mexico. Econ Geol 75:229–250

    Article  Google Scholar 

  • Akaryalı E, Tüysüz N (2013) The genesis of the slab window-related Arzular low-sulfidation epithermal gold mineralization (eastern Pontides, NE Turkey). Geosciences Frontiers 4:409–421

    Article  Google Scholar 

  • Alavi M (1991) Tectonic map of the Middle East (scale 1: 5, 000, 000). Geol Surv Iran

  • Alavi M (1980) Tectonostratigraphic evolution of the Zagrosides of Iran. Geology 8:144–149

    Article  Google Scholar 

  • Atalou S, Nazafati N, Lotfi M, Aghazadeh M (2017) Fluid inclusion investigations of the Masjed Daghi copper-gold porphyry-epithermal mineralization, east Azerbaijan province, NW Iran. Open J Geology 7:1110–1127

    Article  Google Scholar 

  • Arribas AJ (1995) Characteristics of highsulfidation epithermal deposits, and their relation to magmatic fluid. Mineral Assoc Can 23:419–454

    Google Scholar 

  • Ballato P, Uba CE, Landgraf A, Strecker MR, Sudo M, Stockli DF, Freidrich A, Tabatabaei SH (2011) Arabia-Eurasia continental collision: Insights from Tertiary foreland-basin evolution in the Alborz Mountains, northern Iran. Bulletin 123:106–131

  • Bean RE (1982) Hydrothermal alteration in silicate rocks. In: Titley SR (ed) advances in geology of the porphyry copper deposits, southwestern north America. University of Arizona Press, Tucson, pp 117–137

    Google Scholar 

  • Berberian M, King GCP (1982) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18:210–265

    Article  Google Scholar 

  • Berberian F, Berberian M (1981) Tectono-plutonic episodes in Iran Zagros Hindu Kush. Himal Geodynamic Evolut 3:5–32

    Article  Google Scholar 

  • Bodnar RJ, Reynolds TJ, Kuehn CA (1985) Fluid inclusion systematic in epithermal systems. Rev Econ Geol 2:73–97

    Google Scholar 

  • Calagari AA, Polyad A, Patrick RAD (2001) Veinlets and micro veinlets studies in Sungun porphyry deposit, east Azarbaijan. Iran Geosciences 10:70–79

    Google Scholar 

  • Chiu HY, Chung SL, Zarrinkoub MH, Mohammadi SS, Khatib MM, Iizuka Y (2013) Zircon U-Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos 162:70–87

    Article  Google Scholar 

  • Ciobanu CL, Cook NJ, Stein H (2002) Regional setting and geochronology of the late Cretaceous bananitic magmatic and metallogenic belt. Mineral Deposita 37:541–567

    Article  Google Scholar 

  • Cooke DR, Simmons SF (2000) Characteristics and genesis of epithermal gold deposits. Rev Econ Geol 13:221–244

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (2013) An introduction to the rock forming minerals. 3rd excerpted student edition. Geological Society of London/UK, pp 505

  • Dewey JF, Pitman WC, Ryan WBF, Bonnin J (1973) Plate tectonics and the evolution of the apian system. Geol Soc Am Bull 84:3137–3180

    Article  Google Scholar 

  • Ebrahimi S, Alirezaei S (2008) Tectonomagmatic Setting of the Epithermal Precious Metal Deposits in the Arasbaran Metallogenic Province, NW Iran. GACMAC Annu meet, Quebec

  • Ebrahimi S, 2006. Mineralogy, Alteration, Geochemistry and Mechanism of Ore Formation in Gold bearing Veins at Sharafabad, Eastern Azarbaijan, Iran. Dissertation, University of Shahid Beheshti

  • Ebrahimi S, Alirezaei S, Pan Y (2011) Geological Setting, Alteration, and Fluid Inclusion Characteristics of Zaglic and Safikhanlou Epithermal Gold Prospects, Northwest Iran. Geol Soc Lond, Spec Publ 350:133–147

    Article  Google Scholar 

  • Ebrahimi S, Alirezaei S, Pan Y, Mohammadi B (2017) Geology, mineralogy and ore fluid characteristics of the Masjed Daghi gold bearing veins system, NW Iran. J Econ Geol 9:561586 (in Persian with English abstract)

  • Emamalipour A, Abdoli Eslami H, Hajalilou B (2010) Geochemistry investigation of hydrothermal alteration related to gold epithermal mineralization in the Masjed Daghi area, west Julfa, northwest Iran. J Econ Geol 3:199–213 (in Persian with English abstract)

  • Ghadimzadeh A, Heydari S, Hajnouroozi D, Khodabande F (2000) Exploration studies of epithermal gold and Cu Mo porphyry in the Arasbaran zone. Geol Surv Iran 230:134

    Google Scholar 

  • Goldstein RH, Raynolds TJ (1994) Systematic of fluid inclusions in diagenetic minerals. Soc Sediment Geol 31:199

    Google Scholar 

  • Haas JL (1971) The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure. Econ Geol 66:940–946

    Article  Google Scholar 

  • Hassanpour Sh, Alirezaei S (2017) Eocene MasjedDaghi porphyry CuAu deposit; an example of island arc porphyry type deposit in NW Iran. Earth Sci 104:43–58 (in Persian with English abstract)

  • Hassanzadeh J (1993) Metallogenic and tectonomagmatic events in the SE sector of the Cenozoic active continental margin of central Iran (Shahr e Babak area, Kerman Province): Dissertation, University of California

  • Hassanzadeh j, Ghazi AV, Axen G, Guest B (2002) Oligo-Miocene mafic alkaline magmatism in north and northwest of Iran: evidence for the separation of the Alborz from the UrumiehDokhtar magmatic arc. Geol Soc Am, Abstr

  • Hedenquist HW, Arribas A, Gonzales Urien E (2000) Exploration for epithermal gold deposits. Rev Econ Geol 13:245–277

    Google Scholar 

  • Heydarzadeh A (2005) Study of economic geology and controlling factors of Au mineralization in Zaglic area, east of Ahar. Dissertation, Inst Earth Sci Geol Surv Iran

  • Heidari SM, Daliran F, Paquette JL, Casquet D (2015) Geology, timing, and genesis of the high sulfidation Au (Cu) deposit of Touzlar, NW Iran. Ore Geol Rev 65:460–486

    Article  Google Scholar 

  • Hezarkhani A, Williams Jones AE (1998) Controls of alteration and mineralization in the Sungun porphyry copper deposit, Iran: Evidence from fluid inclusion and stable isotopes. Econ Geol 93:651–670

    Article  Google Scholar 

  • Hosseini M, Hassanzadeh J, Alirezaei S, Sun WLC (2017) Age revision of the Neotethyan is migration into the southeast Urumieh Dokhtar belt of Iran geochemistry and UPb zircon geochronology. Lithos 86:114–134

    Google Scholar 

  • Hosseinzadeh MR (2008) Geology, geochemistry, fluid inclusion, alteration, and genesis of Sunajil porphyry copper deposits, east of Heris, eastern Azarbaijan province, Iran. Dissertation, Tabriz University

  • Hovakimyan A, Moritz R, Tayan R, Melkonyan R, Harutynunyan M (2019) Cenozoic strike-slip tectonics and structural controls of porphyry Cu-Mo and epithermal deposits during geodynamic evolution of the southernmost Lesser Caucasus, Tethyan Metallogenic Belt. Econ Geol 114:1301–1337

    Article  Google Scholar 

  • Imer A, Richards JP, Creaser RA (2013) Age and tectonomagmatic setting of the EoceneÇöpler–Kabataş magmatic complex and porphyry-epithermal Au deposit, East Central Anatolia, Turkey. Mineral Deposita 48:557–583

    Article  Google Scholar 

  • Jamali H, Mehrabi B (2015) Relationships between arc maturity and Cu-Mo-Au porphyry and related epithermal mineralization at the Cenozoic Arasbaran metallogenic Belt. Ore Geol Rev 65:487–501

    Article  Google Scholar 

  • John DA, Nash JT, Clark CW, Wulftange WH (1991) Geology, hydrothermal alteration, and mineralization at the Paradise Peak gold-silver-mercury, Nye Country, Nevada. Geol Soc Nevada 1020–1050

  • Karimzadeh Somarin A, Moayyed M, Hosseinzadeh G (2002) Ore mineralization in the Sonajil porphyry copper deposit, Herris region, NW Iran. Int Mineral Assoc, Edinburgh, pp 271

  • Karimzadeh Somarin A (2004) Geochemical effects of endo-sakarn formation in the Mazraeh Cu-Fe skarn deposit in northwestern Iran, Geochemistry. Explor Environ Anal 4:307–315

    Article  Google Scholar 

  • Kouhestani H, Ghaderi M, Large R, Zaw K (2017) Texture and chemistry of pyrite at Chah Zard epithermal gold-silver deposit. Iran Ore Geol Rev 84:80–101

    Article  Google Scholar 

  • Kuşcu I, Tosdal RM, Gencalioglu G, Friedman R, Ullrich TD (2013) Late Cretaceous to Middle Eocene magmatism and metallogeny of a portion of the southeastern Anatolian Orogenic Belt, East Central Turkey. Econ Geol 108:641–666

    Article  Google Scholar 

  • Kuscu GG, Geneli F (2010) Review of post-collision volcanism in the Central Anatolian Volcanic Province (Turkey), with special reference to the Tepekoy volcanic complex. Int J Earth Sci 99:593–621

    Article  Google Scholar 

  • Lecumberri-Sanches P, Steele-MacInnis M, Bodnar RJ (2012) A numerical model to estimate trapping conditions of fluid inclusions that homogenize by halite disappearance. Cheochim Cosmochim Acta 92:14–22

    Article  Google Scholar 

  • Mohammadi B, Aliakbari H, Fard M, Samaee A (2005) Geology and drilling report of Masjed Daghi area (scale 1:1000). Geol Surv Iran 340:130

    Google Scholar 

  • Moore WJ, McKee EH, Akinci OT (1980) Chemistry and chronology of plutonic rocks in the Pontid Mountains, northern Turkey. In: Jankovic S, Sillitoe RH (eds) European Copper Deposits. UNESGOIGCP, Belgrade, pp 209–216

  • Morley CK, Kongwung B, Julapour AA, Abdolghafourian M, Hajian M, Waples D, Warren J, Otterdoom H, Srisuriyon K, Kazemi H (2009) Structural developments of a major late Cenozoic basin and transpressional belt in central Iran: The Central Basin Qom-Saveh area. Geosphere 5:325–362

    Article  Google Scholar 

  • Moritz R, Melkonyan R, Selby D, Popkhadze N, Gugushvili V, Tayan R, Ramazanov V (2016) Metallogeny of the Lesser Caucasus: from arc construction to post-collision evolution. Spec Publ Soc Econ Geol 19:157–192

    Google Scholar 

  • NICICO (2009a) Geology of Haftcheshmeh deposit in NW Iran. Natl Iran Copp Co 302:430

    Google Scholar 

  • NICICO (2009b) Geology and drilling report of the Masjed Daghi area. Natl Iran Copp Co 243:115

    Google Scholar 

  • PKC (2000) Geology report of the Masjed Daghi area. Pichab Kavosh Co 195:110

    Google Scholar 

  • Perelló J, Carlotto V, Zarate A, Ramos P, Posso H, Neyra C, Caballero A, Fuster N, Muhr R (2003) Porphyrystyle alteration and mineralization of the middle Eocene to early Oligocene Andahuaylas-Yauri belt, Cuzco region, Peru. Econ Geol 98:1575–1606

    Article  Google Scholar 

  • Pouchou JL, Pichior F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model ̔PAP ̓. Heinrich KFJ, Newbury DE (edrs): Electron probe quantitation. Plenum Press, New York, pp 3–175

    Google Scholar 

  • Pournik P (2006) Detailed exploration in Sharafabad Hizehjan gold district (Mazra e Shadi mineralization). Northwest Varzaghan Geol Surv Iran 213:130

    Google Scholar 

  • Pudak C, Halter WE, Heinrich CA, Pettke T (2009) Evolution of magmatic vapor to goldrich epithermal liquid: The porphyry to epithermal transition at Nevados de Famatina, Northwest Argentina. Econ Geol 104:449–477

    Article  Google Scholar 

  • Rezaeian M, Carter A, Hoviu N, Allen MB (2012) Cenozoic exhumation history of the Alborz Mountain, Iran: New constrain from low-temperature chronology. Tectonics 31:1–20

    Article  Google Scholar 

  • Richard JP (2015) Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: From subduction to collision. Ore Geol Rev 70:323–345

  • Seward TM (1973) Thio complexes of gold and the transit of gold in hydrothermal ore solutions. Geochim Cosmochim Acta 37:370–399

    Article  Google Scholar 

  • Shafiei B, Haschke M, Shahabpour J (2009) Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Mineral Deposita 44:265–283

    Article  Google Scholar 

  • Shepherd T, Rankin AH, Alderton DHM (1985) A practical guide to fluid inclusion studies. Blackie, London, p 239

    Google Scholar 

  • Sillitoe HR (1973) Geology of the Los Pelambres porphyry copper deposit, Chile. Econ Geol 68:1–10

    Article  Google Scholar 

  • Sillitoe HR, Hedenquist HW (2003) Linkage between volcano tectonic settings, ore fluid compassions, and epithermal precious metal deposits. Soc Econ Geol Spec Publ 10:315–343

    Google Scholar 

  • Sillitoe R, Tolman J, Kerkvoort GV (2013) Geology of the Caspiche porphyry gold-copper deposit, Maricunga Belt, Northern Chile. Econ Geol 108:585–604

    Article  Google Scholar 

  • Simmons SF, Christenson BC (1994) Origins of calcite in a boiling geothermal system. Am J Sci 295:361–400

    Article  Google Scholar 

  • Tarkian M, Hunken U, Tokmakchieva M, Bogdanov K (2003) Precious-metal distribution and fluid inclusion petrography of the Elatsite porphyry copper deposit, Bulgaria. Mineral Deposita 38:261–281

    Article  Google Scholar 

  • Verdal C, Wernicke BP, Hassanzadeh J, Guest B (2011) A Paleogene extensional arc flare up in Iran. Tectonics 30:1–20

    Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviation for names of rock forming minerals. Am Mineral 95:185–187

    Article  Google Scholar 

  • Yasami N, Ghaderi M, Madanipour S, Taghilou B (2017) Structural control on overprinting high-sulfidation epithermal on porphyry mineralization in the Chadorchay deposit, northwestern Iran. Ore Geol Rev 86:212–224

    Article  Google Scholar 

  • Yasami N, Ghaderi M (2019) Distribution of alteration, mineralization and fluid inclusion features in porphyry high-sulfidation epithermal systems: The Chodarchay example, NW Iran. Ore Geol Rev 104:227–245

    Article  Google Scholar 

  • Yigit O (2006) Gold in Turkey a missing link in Tethyan metallogeny. Ore Geol Rev 28:147–179

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to B. Borna from the Geological Survey of Iran and National Iranian Copper Company for access to the drill cores and useful data. We thank P. Wickham, P. Middlestead and W. Abdi at GG-Hatch stable isotope laboratories, University of Ottawa, for sulfur isotope analysis. Financial support for the work was supplied by a research grant to S. Ebrahimi from Shahrood University of Technology and a Discovery Grant to Y. Pan from the Natural Science and Engineering Research Council of Canada.

Funding

Financial support for this work was provided by a research grant to S. Ebrahimi from Shahrood University of Technology and a Discovery Grant to Y. Pan from the Natural Science and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Contributions

SE and YP conceived, designed and carried out the research. SE drafted the manuscript. All authors contributed to data interpretation, discussion, and revision of the manuscript.

Corresponding author

Correspondence to Susan Ebrahimi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Editorial handling: L. Danyushevsky

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Summary of fluid inclusion population, mineral and alteration assemblage from various vein stages mineralization of the Masjed Daghi porphyry (this study) and epithermal (Ebrahimi et al. 2017) systems.

Drill hole number, depth (m) and mineralization stage

Mineral

Alteration assemblage

P/PS

Type

Tm ice (°C)

Tm sylvite

Tm halite

Th range (°C) low/mean/high (number)

Salinity wt% NaCl equiv

(°C)

(°C)

Porphyry system

P-Bh4-520 (stage ΙΙ)

Qz

Potassic

P

HS1

  

385

550

45.8

 

"

"

"

HS1

  

264

330

30.2

 

"

"

"

V

-3.4

  

331

5.5

P-Bh15-458 (stage ΙΙ)

Qz

Potassic

P

HS1

  

585–592

585–600 (2)

71.8–72.8

 

"

"

P

HS1

  

372/585/590

595/597/598 (3)

41.7 to 72.5

 

"

"

P

HS1

  

527–553

346–378 (2)

63.5–67.2

 

"

"

P

V

-0.2, -3.1

  

220–275(2)

0.3–5

 

"

"

PS

V

-12.7,-14.3

  

158–184 (2)

16.6–18.2

P-Bh1-333.4 (stage ΙΙ)

Qz

Potassic

P

HS1

  

284–375

559–589(3)

36.9–44.8

 

"

"

P

HS1

  

295–419

476–484 (2)

37.8–49.1

 

"

"

PS

HS1

  

335

415

41

 

"

"

P

V

-20

  

318

22.3

   

P

V

-2.5

  

225

4

P-Bh8-510 (stage ΙΙ)

Qz

Potassic

P

HS1

  

470/561/600

561/580/595 (3)

55.7/68/73.9

 

"

"

P

HS1

  

324–569

589–598 (2)

40–69.4

 

"

"

PS

HS1

  

364–384

456–498 (2)

43.7–45.7

 

"

"

PS

V

-03.4/-3.8/-4

  

188/215/236 (3)

5.5–6.1/6.7

P-Bh13-418.2 (stage ΙΙ)

Qz

Potassic

P

HS1

  

453

486

53.6

 

"

"

P

HS1

  

405–440

533–586(2)

43.1–47.9

 

"

"

P

HS1

  

295–395

515/546 (2)

37.7–48.9

P-Bh15-454 (stage ΙΙ)

Qz

Potassic

P

HS1

 

196

312–386

305–348(2)

39.1–45.9

 

"

"

P

HS1

  

321–344

564–583(2)

39.8–41.8

 

"

"

P

HS1

  

352

412

42.5

 

"

"

P

HS1

 

210–245

525–582

591–600(2)

63.2–71.3

 

"

"

P

V

-4.2,-5.8

  

211–218 (2)

6.6–8.9

 

"

"

P

V

-18,-18.5

  

288–314(2)

20.9–21.3

 

"

"

P

V

-6.5,-8.5

  

285–296 (2)

9.8–12.4

P-Bh11-447 (stage ΙΙ)

Qz

Potassic

P

HS1

  

595

424

73.2

 

"

"

P

HS1

  

344

344

41.8

 

"

"

P

V

   

311

11.4

P-Bh-8–572 (stage ΙΙ-ΙΙΙ)

Qz

Phyllic

P

HS1

  

590–595

597–598(2)

72.5–73.5

 

Anh

"

P

HS2

  

385

273

45.8

 

Qz

"

P

HS2

  

168–470

372–379 (2)

30.4–55.7

 

"

"

P

HS1

  

525

482

63.2

 

Qz

"

PS

HS2

  

276

252

36.4

 

Anh

"

P

V

-6.9

  

206

10.3

P-Bh11-473.4 (stage ΙΙ-ΙΙΙ)

Qz

Phyllic

P

HS1

 

155

477

590

56.6

 

Qz

"

P

HS1

 

114

545–595

521–528 (2)

59–60

 

Anh

"

P

HS2

  

472

223

34.1

 

Qz

"

P

HS2

 

124

341–355

456–466 (2)

41.5–42.8

P-Bh4-306 (stage ΙΙ- ΙΙΙ)

Anh

Phyllic

P

HS2

  

283

192

37

 

Qz

"

p

HS1

  

396

578

47

 

"

"

P

HS1

  

461–469

585–590 (2)

54.6–64.5

 

"

"

P

HS2

  

197–267

234–287 (2)

35.1–31.2

 

"

"

P

HS2

  

181–195

242–245(2)

30.9 -31.6

 

"

"

PS

HS2

  

251–254

314–316 (2)

20.6 -34.9

 

Anh

"

P

V

-5.4

 

283

206

8.3

 

Qz

"

P

V

-5.4,-8.6

  

207–259 (2)

8.3–12.4

 

"

"

P

V

-17.5,-20

  

295–304

20.6–22.3

P-Bh8-487 (stage ΙΙΙ)

Qz

Phyllic

P

HS2

  

420

213

49.6

 

"

"

PS

HS2

  

430–466

202–224 (2)

50.8–55.3

 

"

"

P

HS2

  

264–309

305–386 (2)

35.6–39.3

P-Bh9-600 (stage ΙΙΙ)

Anh

Phyllic

P

HS2

  

396

292

47

 

"

"

P

V

-6.7

  

122

10.1

P-Bh11-287 (stage ΙV)

Qz

Phyllic

P

HS2

  

218

250

32.8

 

"

"

P

V

-2.5,-4.6

  

203

7.2

P-Bh1-326 (stage ΙV)

Qz

Phyllic

P

HS2

  

433–442

308–340(2)

51.2–52.2

 

"

"

P

HS2

  

496

436

59.2

 

"

"

P

V

-4.6,-5.1

  

210–242 (2)

7.5–7.9

 

"

"

P

V

-1.8,-3.4

  

180–190 (2)

3–5.4

 

"

"

P

V

-6.5,-18.1

  

248/294(2)

10–21

Epithermal system

         

V3-Bh3-37

Qz

Silicic

P

L

-1.2,-9

  

148/206/298(37)

2 to 12.8

V3-Bh3-38

Qz

"

P/PS

L

-1.1,-5.2

  

123/182/258(36)

1.9 to 8.1

V3-Bh3-64

Sp

"

P

L

-1.1,-7.6

  

112/174/218(42)

1.9 to 11.2

V3-Bh3-91

Sp

"

P

L

-1.9,-3.1

  

129/135/141(6)

3.2 to 5.1

  1. Th homogenization temperature, Tm melting temperature, P primary, PS pseudosecondary, L liquid-rich inclusion (L > V), V vapor-rich inclusion (V > L), HS1 halite-saturated hypersaline inclusion (V + L + S) from stage ΙΙ, HS2 halite-saturated hypersaline inclusion (V + L + S) from stages ΙΙΙ and ΙV, Anh Anhydrite, Qz Quartz, Sp Sphalerite.

Appendix 2

Microprobe analysis of pyrite (Py) and sphalerite (Sp) minerals from the vein type Masjed Daghi deposit, samples are from V3 Vein (in wt%). Detection limit for elements (Fe = 0.04, Cu = 0.01, Zn = 0.01, Ag = 0.002, Cd = 0.01, Sb = 0.002, Au = 0.002, As = 0.05, S = 0.05 wt%). bdl = below detection limit.

Sample/Mineral

Fe

Co

Ni

Cu

Zn

Ag

Cd

Sb

Au

As

S

Total

D4/Py

46.59

0.07

bdl

bdl

0.03

bdl

0.10

bdl

0.04

bdl

52.97

99.81

39.94

0.06

bdl

bdl

0.01

bdl

0.41

0.05

0.03

bdl

47.75

88.26

46.57

0.04

bdl

0.02

0.50

bdl

0.02

0.02

0.02

bdl

53.76

100.98

46.56

0.05

0.06

bdl

bdl

bdl

0.15

bdl

bdl

bdl

53.05

99.88

46.52

0.04

bdl

0.02

0.04

bdl

0.01

bdl

bdl

2.76

49.62

99.01

47.07

0.06

bdl

0.02

bdl

bdl

bdl

0.01

0.02

0.17

53.08

100.45

47.94

0.06

bdl

0.02

0.03

0.08

bdl

0.06

0.01

bdl

52.12

100.33

46.49

0.06

0.02

0.06

bdl

bdl

0.09

bdl

bdl

3.26

51.46

101.46

47.08

0.05

0.01

bdl

0.03

bdl

0.13

bdl

0.02

bdl

53.17

100.49

D4/Sp

0.62

0.01

0.01

bdl

66.72

bdl

0.39

bdl

bdl

bdl

32.51

100.26

0.97

bdl

0.02

bdl

65.92

bdl

0.29

bdl

bdl

bdl

33.13

100.35

D3/Py

46.67

0.09

bdl

0.04

0.02

bdl

0.11

bdl

0.02

2.30

50.29

99.56

47.32

0.06

bdl

0.02

0.06

bdl

bdl

bdl

bdl

0.30

53.11

100.93

47.35

0.05

0.04

0.01

0.03

bdl

0.05

bdl

0.01

bdl

53.76

101.31

47.00

0.03

bdl

0.01

0.02

bdl

bdl

bdl

0.03

bdl

51.16

98.26

47.31

bdl

0.02

0.03

0.04

bdl

bdl

bdl

0.05

bdl

52.33

99.77

D3/Sp

1.33

0.02

0.01

0.41

64.33

bdl

0.31

0.08

0.02

bdl

31.87

98.37

3.11

bdl

0.01

0.32

62.35

bdl

0.71

0.15

bdl

bdl

32.25

98.91

6.23

0.03

bdl

0.45

58.74

0.53

0.02

0.06

0.17

bdl

31.90

98.15

1.37

0.04

0.01

0.56

65.90

0.01

0.46

bdl

0.03

bdl

32.09

100.47

0.45

bdl

bdl

0.04

67.07

0.11

0.36

bdl

0.02

bdl

32.25

100.30

1.07

bdl

bdl

0.25

64.63

0.15

0.16

bdl

bdl

bdl

32.05

98.32

8.70

0.05

bdl

0.26

55.88

0.58

0.57

0.02

bdl

bdl

32.19

98.25

5.26

0.01

bdl

bdl

60.26

0.19

0.56

bdl

bdl

bdl

32.25

98.60

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, S., Pan, Y. & Rezaeian, M. Origin and evolution of the Masjed Daghi Cu-Au-Mo porphyry and gold epithermal vein system, NW Iran: constraints from fluid inclusions and sulfur isotope studies. Miner Petrol 115, 643–662 (2021). https://doi.org/10.1007/s00710-021-00761-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-021-00761-z

Keyword

Navigation