Skip to main content
Log in

Chemical composition of magnetite and chlorite from the stringer zone of the Nudeh volcanogenic massive sulfide (VMS) deposit, Iran: geological implications

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The southwest Sabzevar basin situated in the Sabzevar zone is considered to be an attractive metallogenic province in Iran that hosts both volcanogenic massive sulfide (VMS) and stratiform manganese deposits. The Nudeh Besshi-type VMS deposit is located in the Lower Late Cretaceous volcano-sedimentary sequence. The ore mineralization in this deposit is hosted in the alkali olivine basalt flow and tuffaceous silty sandstone rocks. The Nudeh VMS deposit consists of 2 million metric tons of Cu-Zn massive sulfide overlying a Cu-Fe-rich stringer. The massive sulfide orebody consists dominantly of pyrite, chalcopyrite, friedrichite, magnetite, and sphalerite, together with minor quartz, chlorite, and sericite. Chloritization, silicification, and sericitization are the main wall-rock alteration types; alteration intensity increases towards the stringer zone. Chloritized footwall rocks extend up to 20 m below the stringer zone. The quartz-bearing stringer veins also contain pyrite, chalcopyrite, magnetite, and bornite. Magnetite crystals from the stringer ores show variable contents of many elements, such as MgO (0.05 wt%), Al2O3 (0.63 wt%), TiO2 (0.07 wt%), V2O3 (0.045 wt%), SiO2 (0.65 wt%), CoO (0.10 wt%), NiO (0.009 wt%), ZnO (0.023 wt%), and CaO (0.03 wt%). The moderate to high V contents are interpreted to result from relatively reduced, seafloor hydrothermal activiy. Compositional variations of magnetite are possibly related to variations in oxygen fugacity, temperature, and water/rock interaction. Within the stringer zone, chlorite 2 (Chl-2) in the vein-veinlets and chlorite 1 (Chl-1) in the chloritized alkali olivine basalt rock are chemically indistinguishable, with 26.92–34.67 wt% FeO and 5.99–14.01 wt% MgO. Chlorite geothermometer studies indicate crystallization formation temperatures of 414 °C (Chl-1) and 303 °C (Chl-2), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allen RL, Weihed D, Blundell T, Crawford G, Davidson A, Galley H, Gibson M, Hannington P, Herzig R, Large D, Lentz V, Maslennikov S, McCutcheon J, Peter J, Tornos F (2002) Global comparisons of volcanic-hosted massive sulphide districts, in Blundel D, Neubauer F, von Quadt A, The timing and location of major ore deposits in an evolving orogeny. Geol Soc London Spec Publ 13–37

  • Banlan E, De Villiers JPR, Eeckhout SG, Glatzel P, Toplis MJ, Fritsch E, Allard T, Galoisy L, Calas G (2006) The oxidation state of vanadium in titanomagnetite from layered basic intrusions. Am Mineral 91:953–956

    Article  Google Scholar 

  • Bayliss P (1975) Nomenclature of the trioctahedral chlorites. Can Mineral 13:178–180

  • Beaufort D, Patrier P, Meunier A, Ottaviani MM (1992) Chemical variations in assemblages including epidote and/or chlorite in the fossil hydrothermal system of Saint Martin (Lesser Antilles). J Volcanol Geotherm Res 51:95–114

    Article  Google Scholar 

  • Beaufort D, Rigault C, Billon S, Billault V, Inoue A, Inoue S, Patrier P (2015) Chlorite and chloritization processes through mixed-layer mineral series in lowtemperature geological systems – a review. Clay Miner 50:497–523

    Article  Google Scholar 

  • Bhattacharya HN, Chakrabortym I, Ghosh KK (2007) Geochemistry of some banded iron-formations of the Archean supracrustals, Jharkhand-Orissa region, India. J Earth Syst Sci 116:245–259

    Article  Google Scholar 

  • Bordage A, Baland E, Villiers JR, Cromarty R, Juhim A, Carvallo C, Calas G, Sunder Raju PV, Glatzel P (2011) V oxidation state in Fe-Ti oxides by high-energy resolution fluorescence-detected X-ray absorption spectroscopy. Phys Chem Miner 38:449–458

    Article  Google Scholar 

  • Bowles JFW, Howie RA, Vaughan DJ, Zussman J (2011) Rock-forming minerals- non-silicates: oxides, hydroxides and sulphides, Second edn. Geological Society, London

  • Bryndzia LT, Scott SD (1987) The composition of chlorite as a function of sulfur and oxygen fugacity; an experimental study. Am J Sci 287:50–76

    Article  Google Scholar 

  • Carew MJ (2004) Controls on Cu-Au mineralization and Fe oxide metasomatism in the Eastern Fold Belt, N.W. Queensland, Australia. Unpublished Ph.D thesis. James Cook University, Queensland

  • Cathelineau M (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner 23:471–485

    Article  Google Scholar 

  • Chen T, Zhou F, Li X, Gao JF, Hou K (2015) In-situ LA-ICP-MS trace elemental analyses of magnetite: Cu-(Au, Fe) deposits in the Khetri copper belt in Rajasthan Province, NW India. Ore Geol Rev 65:929–939

    Article  Google Scholar 

  • Chung D, Zhou MF, Gao JF, Chen WT (2015) In-situ LA-ICP-MS trace elemental analyses of magnetite: the late Palaeoproterozoic Sokoman iron formation in the Labrador trough, Canada. Ore Geol Rev 65:917–928

    Article  Google Scholar 

  • Dare SAS, Barnes SJ, Beaudoin G, Meric J, Boutroy E, Potvin-Doucet C (2014) Trace elements in magnetite as petrogenetic indicators. Miner Depos 49:785–796

  • De Caritat P, Hutcheon I, Walshe JL (1993) Chlorite geothermometry: a review. Clay Miner 41:219–239

    Article  Google Scholar 

  • Dora ML, Randive KR (2015) Chloritisation along the Thanewasna shear zone, Western Bastar Craton, Central India: its genetic linkage to Cu–Au mineralisation. Ore Geol Rev 70:151–172

    Article  Google Scholar 

  • Dupuis C, Beaudoin G (2011) Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Miner Depos 46:319–335

  • Franklin JM, Lydon JW, Sangster DF (1981) Volcanic-associated massive sulphide deposits. Econ Geol 75th Anniversary Volume 485–627

  • Franklin JM, Gibson HL, Galley AG, Jonasson IR (2005) Volcanogenic massive sulfide deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds), Economic Geology 100th Anniversary Volume. Society of Economic Geologists, Littleton, CO, pp 523–560

  • Galley AG, Hannington MD, Jonasson IR (2007) Volcanogenic massive sulfide deposits. Mineral deposits of Canada. In: Goodfellow WD (ed) Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods. Geological Association of Canada, Mineral Deposits Division, Special Publication 5:141–161

  • Gemmell JB, Herrmann W (2001) A special issue on alteration associated with volcanic-hosted massive sulfide deposits, and its exploration significance. Econ Geol 96:909–912

    Article  Google Scholar 

  • Hey MH (1954) A new review of the chlorites. Mineral Mag 30:277–292

    Google Scholar 

  • Hu H, Lentz D, Wei Li J, McCarron T, Zhao X, Hall D (2015) Reequilibration processes in magnetite from iron skarn deposits. Econ Geol 110:1–8

    Article  Google Scholar 

  • Huang J, Chen H, Han J, Deng X, Lu W, Zhu R (2018) Alteration zonation and short wavelength infrared (SWIR) characteristics of the Honghai VMS Cu-Zn deposit, eastern Tianshan, NW China. Ore Geol Rev 100:263–279

    Article  Google Scholar 

  • Ilton ES, Eugster HP (1989) Base metal exchange between magnetite and chloride-rich hydrothermal fluid. Geochim Cosmochim Acta 53:291–301

  • Jago CP, Tosdal RM, Cooke DR, Harris AC (2014) Vertical and lateral variation of mineralogy and chemistry in the early Jurassic Mt. Milligan alkalic porphyry Au-Cu deposit, British Columbia, Canada. Econ Geol 109:1005–1033

    Article  Google Scholar 

  • Jones S, Herrmann W, Gemmell JB (2005) Short wavelength infrared spectral characteristics of the HW horizon: implications for exploration in the Myra falls volcanic-hosted massive sulfide camp, Vancouver Island, British Columbia, Canada. Econ Geol 100:273–294

    Article  Google Scholar 

  • Jowett EC (1991) Fitting iron and magnesium into the hydrothermal chlorite geothermometer. GAC/MAC/SEG Joint Annual Meeting (Toronto, May 27–29, 1991), Program with Abstracts 16, A62

  • Kelley DL, Kelley KD, Coker WB, Caughlin B, Doherty ME (2006) Beyond the obvious limits of ore deposits: the use of mineralogical, geochemical, and biological features for the remote detection of mineralization. Econ Geol 101:729–752

    Article  Google Scholar 

  • Laakso K, Peter JM, Rivard B, White HP (2016) Short-wave infrared spectral and geochemical characteristics of hydrothermal alteration at the Archean Izok Lake Zn-Cu-Pb-Ag volcanogenic massive sulfide deposit, Nunavut, Canada: application in exploration target vectoring. Econ Geol 111:1223–1239

    Article  Google Scholar 

  • Large RR (1992) Australian volcanic-hosted massive sulfide deposits: features, styles and genetic models. Econ Geol 87:471–510

    Article  Google Scholar 

  • Lentz DR, Hall DC, Hoy LD (1997) Chemostratigraphic, alteration, and oxygen isotopic trends in a profile through the stratigraphic sequence hosting the heath steel be zone massive sulfide deposit, New Brunswick. Can Mineral 35:841–874

    Google Scholar 

  • Lindsley DH (1976) The crystal chemistry and structure of oxide minerals as exemplified by the Fe-Ti oxides. In: Rumble III, D (ed) Oxide Minerals. Reviews in Mineralogy: Mineralogical Society of America, pp 1–60

  • MacLean WH, Kranidiotis P (1987) Immobile elements as monitors of mass transfer in hydrothermal alteration; Phelps dodge massive sulfide deposit Matagami, Quebec. Econ Geol 82:951–962

    Article  Google Scholar 

  • Maghfouri S (2012) Geology, mineralogy, geochemistry and genesis of cu mineralization within late cretaceous volcano-sedimentary sequence in southwest of Sabzevar, with emphasis on the Nodeh deposit. Unpublished M.Sc. Thesis, University of Tarbiat Modares, Iran, 312 p. (in Persian with English abstract)

  • Maghfouri S (2017) Geology, Geochemistry, Ore Controlling Parameters and Genesis of Early Cretaceous Carbonate-clastic Hosted Zn-Pb Deposits in Southern Yazd Basin, with Emphasis on Mehdiabad Deposit. Unpublished Ph.D. Thesis. Tabriz University, Iran, 475 pp

  • Maghfouri S, Rastad E, Mousivand F, Lin Y, Zaw K (2016) Geology, ore facies and sulfur isotopes geochemistry of the Nudeh Besshi-type volcanogenic massive sulfide deposit, Southwest Sabzevar basin, Iran. J Asian Earth Sci 125:1–21

    Article  Google Scholar 

  • Maghfouri S, Rastad E, Mousivand F, Choulet F, Lin Y (2017) Geological and geochemical constraints on the Cheshmeh-Frezi volcanogenic stratiform manganese deposit, Southwest Sabzevar basin, Iran. Ore Geol Rev 89:96–113

    Article  Google Scholar 

  • Maghfouri S, Rastad E, Lentz DR, Mousivand F, Choulet F (2018) Mineralogy, microchemistry and fluid inclusion studies of the Besshi-type Nudeh cu-Zn VMS deposit, Iran. Chem Erde 78:40–57

    Article  Google Scholar 

  • Makvandi S, Ghasemzadeh-Barvarz M, Beaudoin G, Grunsky E, McClenaghan MB, Duchesne C, Boutroy E (2016) Partial least squares-discriminant analysis of trace element compositions of magnetite from various VMS deposit subtypes: application to mineral exploration. Ore Geol Rev 78:388–408

    Article  Google Scholar 

  • Mollo S, Putirka K, Iezzi G, Scarlato P (2013) The control of cooling rate on titanomagnetite composition: implications for a geospeedometry model applicable to alkaline rocks from Mt. Etna volcano. Contrib. Mineral Petrol 165:457–475

    Article  Google Scholar 

  • Mousivand F, Rastad E, Peter JM, Maghfouri S (2018) Metallogeny of volcanogenic massive sulfide deposits of Iran. Ore Geol Rev 95:974–1007

    Article  Google Scholar 

  • Nadoll P (2011) Geochemistry of magnetite from hydrothermal ore deposits and host rocks - case studies from the Proterozoic Belt Supergroup, Cu-Mo-porphyry + skarn and Climax-Mo deposits in the western United States. Unpublished PhD thesis, University of Auckland, NZ

  • Nadoll P, Angerer T, Mauk JL, French D, Walshe J (2014) The chemistry of hydrothermal magnetite: a review. Ore Geol Rev 61:1–32

    Article  Google Scholar 

  • Nadoll P, Mauk JL, Leveille RA, Koenig AE (2015) Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States. Miner Depos 50:493–515

    Article  Google Scholar 

  • Nielsen RL, Forsythe LM, Gallahan WE, Risk MR (1994) Major- and trace-element magnetite-melt equilibria. Chem Geol 117:167–191

    Article  Google Scholar 

  • Pant S, Singh S, Sahoo PR, Kumar A, Saravanan B, Venkatesh AS, Yadav GS, Kumar P (2019) Mineral chemistry and geothermometry of chlorites in relation to physicochemical conditions of uranium mineralization in the central part of the Singhbhum shear zone, eastern India. Ore Geol Rev 112:97–102

    Article  Google Scholar 

  • Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–41

    Article  Google Scholar 

  • Stöcklin J (1968) Structural history and tectonics of Iran: a review. Am Assoc Pet Geol Bull 52:1229–1258

    Google Scholar 

  • Toplis MJ, Carroll MR (1995) An experimental study of the influence of oxygen fugacity on Fe-Ti oxide stability, phase relations, and mineral–melt equilibria in ferro-basaltic systems. J Petrol 36:1137–1170

    Article  Google Scholar 

  • Toplis ML, Corgne A (2002) An experimental study of element partitioning between magnetite, clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium. Contrib Mineral Petrol 144:22–37

  • Urabe T, Scott SD, Hattori K (1983) A comparison of footwall-rock interactions and geothermal systems beneath some Japanese and Canadian volcanogenic massive sulfide deposits. Econ Geol 5:345–364

    Google Scholar 

  • Van Baalen MR (1993) Titanium mobility in metamorphic systems: a review. Chem Geol 110:233–249

    Article  Google Scholar 

  • Verlaguet A, Brunet F, Goffé B, Murphy WM (2006) Experimental study and modeling of fluid reaction paths in the quartz–kyanite±muscovite–water system at 0.7 GPa in the 350–550 °C range: implications for Al selective transfer during metamorphism. Geochim Cosmochim Acta 70:1772–1788

    Article  Google Scholar 

  • Wechsler BA, Lindsley DH, Prewitt CT (1984) Crystal structure and cation distribution in titanomagnetites (Fe3-xTixO4). Am Mineral 69:754–770

    Google Scholar 

  • Wilkinson JJ, Chang ZS, Cooke DR, Baker MJ, Wilkinson CC, Inglis S, Chen HY, Bruce Gemmell J (2015) The chlorite proximitor: a new tool for detecting porphyry ore deposits. J Geochem Explor 152:10–26

    Article  Google Scholar 

  • Xiao B, Chen H, Wang Y, Han J, Xu C, Yang J (2018) Chlorite and epidote chemistry of the Yandong Cu deposit, NW China: metallogenic and exploration implications for Paleozoic porphyry Cu systems in the eastern Tianshan. Ore Geol Rev 100:168–182

    Article  Google Scholar 

  • Zang W, Fyfe WS (1995) Chloritization of the hydrothermally altered bedrock at the Igarapé Bahia gold deposit, Carajás, Brazil. Miner Depos 30:30–38

    Article  Google Scholar 

  • Zeibold TO (1967) Precision and sensitivity in Electron microprobe analysis. Anal Chem 39:858–861

    Article  Google Scholar 

  • Zhong RC, Li WB, Chen YJ, Huo HL (2012) Ore-forming conditions and genesis of the Huogeqi Cu–Pb–Zn–Fe deposit in the northern margin of the North China Craton: evidence from ore petrologic characteristics. Ore Geol Rev 44:107–120

    Article  Google Scholar 

  • Zhou Z, Tang H, ChenY CZ (2017) Trace elements of magnetite and iron isotopes of the Zankan iron deposit, westernmost Kunlun, China: a case study of seafloor hydrothermal iron deposits. Ore Geol Rev 80:1191–1205

    Article  Google Scholar 

Download references

Acknowledgements

We thank Douglas Hall of University of New Brunswick (UNB) microscopy and microanalysis facility for the analytical work on the EPMA. We thank two anonymous reviewers and editors Xisheng Xu and Lutz Nasdala for their constructive comments. We are grateful for the funds provided by a research grant in 2012. DL was funded by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fardin Mousivand.

Additional information

Editorial handling: X. Xu

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maghfouri, S., Mousivand, F., Rastad, E. et al. Chemical composition of magnetite and chlorite from the stringer zone of the Nudeh volcanogenic massive sulfide (VMS) deposit, Iran: geological implications. Miner Petrol 115, 241–256 (2021). https://doi.org/10.1007/s00710-021-00737-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-021-00737-z

Keywords

Navigation