Skip to main content
Log in

Comparative cytogenetics of the ACPT clade (Anacampserotaceae, Cactaceae, Portulacaceae, and Talinaceae): a very diverse group of the suborder Cactineae, Caryophyllales

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The clade ACPT (Anacampserotaceae, Cactaceae, Portulacaceae, and Talinaceae) is the most diverse lineage of the subordem Cactineae. The relationships between these families are still uncertain, with different topologies suggested by phylogenetic analyses with several combinations of markers. Different basic numbers (x) have been suggested for each family and for the subord, often in a contestable way. Comparative cytogenetic has helped to understand the evolutionary relationships of phylogenetically poorly resolved groups, as well as their mechanisms of karyotype evolution. The karyotype evolution in representatives of Cactineae was analyzed, focusing on the ACPT clade, through the analysis of chromosome number in a phylogenetic bias. The phylogeny obtained showed a well-resolved topology with support for the monophyly of the five families. Although a chromosomal number is known for less than 30% of the Cactineae species, the analyses revealed a high karyotype variability, from 2n = 8 to 2n = 110. The analysis of character reconstruction of the ancestral haploid numbers (p) suggested p = 12 for Cactineae, with distinct basic numbers for the clade family ACPT: Cactaceae and Montiaceae (p = 11), Talinaceae (p = 12), and Anacampserotaceae and Portulacaceae (p = 9). Talinaceae, Anacampserotaceae, and Cactaceae were stable, while Portulaca and Montiaceae were karyotypically variable. The chromosome evolution of this group was mainly due to events of descending disploidy and poliploidy. Our data confirm that the low phylogenetic resolution among the families of the ACPT clade is due to a divergence of this clade in a short period of time. However, each of these families can be characterized by basic chromosome numbers and unique karyotype evolution events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akaike HA (1974) New look at the statistical model identification. IEEE Trans Autom Control Boston 19(6):716–723

    Article  Google Scholar 

  • Applequist WL, Wallace RS (2001) Phylogeny of the Portulacaceous cohort based on ndhF sequence data. Syst Bot 26(2):406–419

    Google Scholar 

  • Applequist WL, Wagner WL, Zimmer EA, Nepokroeff M (2006) Molecular evidence resolving the systematic position of Hectorella (Portulacaceae). Syst Bot 31:310–319

    Article  Google Scholar 

  • Barthlott W, Hunt DR (1993) Cactaceae. In The families and genera of vascular plants 2. In: Kubitzki K (ed). Available in: https://link.springer.com/content/pdf/bfm%3A978-3-662-02899-5%2F1.pdf

  • Bennett MD (1998) Plant genome values: how much do we know? Proc Natl Acad Sci U S A 95:2011–2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardello LM (1989) The chromosomes of Grahamia (Portulacaceae). Plant Syst Evol 163:127–131

    Article  Google Scholar 

  • Bouharmont J (1965) Note sur la cytologie de quelques espéces de Portulaca. Bull Soc R Bot Belg 98:175–188

    Google Scholar 

  • Carolin R (1987) A review of the family Portulacaceae. Aust J Bot 35:383–412

    Article  Google Scholar 

  • Castro JP, Souza LGR, Alves LF, Silva AEB, Guerra M, Felix LP (2013) Cactaceae In: K. Marhold (ed) IAPT/IOPB chromosome data 15. Taxon 62:1073–1083

  • Castro JP, Moraes AP, Chase MW, Souza G, Batista FRC, Felix PF (in press) Evolution of chromosome number and markers in Cactaceae with special emphasis on subfamily Cactoideae. submitted to: American Journal of Botany

  • CCDB- Chromosome Counts Database. Available at: http://ccdb.tau.ac.il/. Accessed 20 Dec 2017

  • Chacón J, Cusimano N, Renner SS (2014) The evolution of Colchicaceae, with a focus on chromosome numbers. Syst Bot 39(2):415–427

    Article  Google Scholar 

  • Christenhusz MMJM, Vorontsova MS, Fay MF, Chase MMW (2015) Results from an online survey of family delimitation in angiosperms and ferns: recommendations to the Angiosperm Phylogeny Group for thorny problems in plant classification. Bot J Linn Soc 178:501–528. https://doi.org/10.1111/boj.12285

    Article  Google Scholar 

  • Cooper DC (1935) Microsporogenesis and the development of the male gametophyte in Portulacaoleracea. Am J Bot 22:453–457

    Article  Google Scholar 

  • Cusimano N, Sousa A, Renner SS (2012) Maximum likelihood inference implies a high, not a low, ancestral haploid chromosome number in Araceae, with a critique of the bias introduced by “x”. Ann Bot 109(4):681–692

    Article  PubMed  Google Scholar 

  • Dannemann A (2000) Der Einfluss von Fragmentierung und Populationsgrösse auf die genetische Variation auf Fitness von seltenen Pflanzenarten am Beispiel von Biscutella laevigata (Brassicaceae). Dissertationes Botanicae 330:1–151

  • Dawe RK (1998) Meiotic chromosome organization and segregation in plants. Annu Rev Plant Physiol Plant Mol Biol 49:371–395

    Article  CAS  PubMed  Google Scholar 

  • Dynesius M, Jansson R (2000) Evolutionary consequences of changes in species geographical distributions driven by Milankovitch climate oscillations. Proc Natl Acad Sci U S A 97:9115–9120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards EJ, Nyffeler R, Donoghue MJ (2005) Basal cactus phylogeny: implications of Pereskia (Cactaceae) paraphyly for the transition to the cactus life form. Am J Bot 92:1177–1188

    Article  PubMed  Google Scholar 

  • Eggli U (1997) A synopsis of woody Portulacaceae in northern Madagascar. Adansonia 17:149–158

    Google Scholar 

  • Eggli UE, Ford-Werntz D (2002) Illustrated handbook of succulent plants—Dicotyledons. Portulacaceae. Springer, New York, pp 370–432

    Google Scholar 

  • Escudero M, Martín-Bravo S, Mayrose I, Fernández-Mazuecos M, Fiz-Palacios O, Hipp AL, Pimentel M, Jiménez-Mejías P, Valcárcel V, Vargas P, Luceño M (2014) Karyotypic changes through dysploidy persist longer over evolutionary time than polyploid changes. PLoS One 9(1)

  • Gerbaulet M (1992) Die Gattung Anacampseros L. (Portulacaceae). I. Untersuchungen zur Systematik. Botanische Jahrbücher für Systematik. Pflanzengeschichte und Pflanzengeographie 113:477–564

    Google Scholar 

  • Gibson AC, Nobel PS (1986) The cactus primer. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Glick L, Mayrose I (2014) ChromEvol: assessing the pattern of chromosome number evolution and the inference of polyploidy along a phylogeny. Mol Biol Evol 31(7):1914–1922

    Article  CAS  PubMed  Google Scholar 

  • Guerra M (2000) Chromosome number variation and evolution in monocots. In: Wilson KL, Morrison DA (eds) Monocots—systematics and evolution—vol 1—Proceedings of the Second International Conference on the Comparative Biology of the Monocots, pp 125–134

  • Guerra M (2008) Chromosome numbers in plant cytotaxonomy: concepts and implications. Cytogenet Genome Res 120:339–350

    Article  CAS  PubMed  Google Scholar 

  • Guerra M (2012) Cytotaxonomy: the end of childhood. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology. Official Journal of the Societa Botanica Italiana146(3):703–710. Available in: https://www.tandfonline.com/doi/abs/10.1080/11263504.2012.717973

  • Hernández-Ledesma P et al (2015) A taxonomic backbone for the global synthesis of species diversity in the angiosperm order Caryophyllales. Botanic Garden and Botanical Museum Berlin (BGBM). Willdenowia 45(3):281–383

    Article  Google Scholar 

  • Hershkovitz MA (1993) Revised circumscriptions and subgeneric taxonomies of Calandrinia and Montiopsis (Portulacaceae) with notes on phylogeny of the portulacaceous alliance. Ann Mo Bot Gard 80:333–365

    Article  Google Scholar 

  • Hershkovitz MA, Zimmer EA (1997) On the evolutionary origins of the cacti. Taxon 46:217–232

    Article  Google Scholar 

  • Hunziker JH, Pozner R, Escobar A (2000) Chromosome number in Halophytum ameghinoi (Halophytaceae). Plant Syst Evol 221:125–127

    Article  Google Scholar 

  • Jones SB (1977) Vernonieae—systematic review. In: Heywood VH, Harborne JB, Turner BL (eds) The biology and chemistry of the Compositae, vol 1. Academic, London

    Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim I, Carr GD (1990) Cytogenetics and hybridization of Portulaca in Hawaii. Syst Bot 15:370–377

    Article  Google Scholar 

  • Langlet O (1927) Beitra ¨ge zur Zytologie der Ranunculaceen. Sven Bot Tidskr 21:1–17

    Google Scholar 

  • Las Peñas ML, Bernardello G, Kiesling R (2008) Karyotypes and fluorescent chromosome banding in Pyrrhocactus (Cactaceae). Plant Syst. Evol. 272(1–4):211–222

    Article  Google Scholar 

  • Las Peñas ML, Urdampilleta JD, Bernardello G, Forni-Martins ER (2009) Karyotypes, heterochromatin, and physical mapping of 18S-26S rDNA in Cactaceae. Cytogenet Genome 124:72–80

    Article  CAS  Google Scholar 

  • Las Peñas ML, Kiesling R, Bernardello G (2011) Karyotype, heterochromatin, and physical mapping of 5S and 18- 5.8-26S rDNA genes in Setiechinopsis (Cactaceae), an Argentine endemic genus. Haseltonia 16(1):83–90

    Article  Google Scholar 

  • Las Peñas ML, Urdampilleta JD, López-Carro B, Santiñaque F, Kiesling R, Bernardello G (2014) Classical and molecular cytogenetics and DNA content in Maihuenia and Pereskia (Cactaceae). Plant Syst. Evol. 300(3):549–558

    Article  Google Scholar 

  • Las Peñas ML, Santiñaque F, López-Carro B, Stiefkens L (2016) Estudios citogenéticos y de contenido de ADN en Brasiliopuntia schulzii (Cactaceae) Cytogenetic studies and DNA content in Brasiliopuntia schulzii (Cactaceae). Gayana Bot 73(2):414–420

    Article  Google Scholar 

  • Las Peñas ML, Oakley L, Moreno NC, Bernardello G (2017) Taxonomic and cytogenetic studies in Opuntia ser. Armatae (Cactaceae). Botany 95:101–120

    Article  CAS  Google Scholar 

  • Levin DA, Wilson AC (1976) Rates of evolution in seed plants: net increase in diversity of chromosome numbers and species numbers through time. Proc Natl Acad Sci U S A 73:2086–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lysák MA, Schubert I (2013) Mechanisms of chromosome rearrangements. In Greilhuber J, Dolezel J, Wendel JF (eds) Plant genome diversity: physical structure, Behaviour and Evolution of Plant Genomes 2 pp 137–147

  • Maddison WP, Maddison MDR (2014) Mesquite: a modular system for evolutionary analysis. Version 3.01. Available at: http://mesquiteproject.org. Acessad 1 Julho 2016

  • Majure LC, Judd WS, Soltis PS, Soltis DE (2012) Cytogeography of the Humifusa clade of Opuntia s.s. Mill. 1754 (Cactaceae, Opuntioideae, Opuntieae): correlations with pleistocene refugia and morphological traits in a polyploid complex. Comp Cytogenet 6:53–77

    Article  PubMed  PubMed Central  Google Scholar 

  • Manton I (1937) The problem of Biscutella laevigata L. II. The evidence from meiosis. Ann Bot 51:439–465

    Article  Google Scholar 

  • Marinho RC, Mendes-Rodrigues C, Bonetti AM, Oliveira PE (2014) Pollen and stomata morphometrics and polyploidy in Eriotheca (Malvaceae-Bombacoideae). Plant Biol 16:508–511

    Article  CAS  PubMed  Google Scholar 

  • Matthew JF, Ketron DW, Zane SF (1994) The seed surface morphology and cytology of six species of Portulaca (Portulacaceae). Castanea 59(4):331–337

    Google Scholar 

  • Mauseth JD (1990) Continental drift, climate, and the evolution of cacti. University of Texas, Austin, TX. Cactus and Succulent Journal 62:302–308

  • Mayrose I, Barker MS, Otto SP (2010) Probabilistic models of chromosome number evolution and the inference of polyploidy. Syst Biol 59:132–144

    Article  PubMed  Google Scholar 

  • Mayrose I, Zhan SH, Rothfels CJ, Magnuson-Ford K, Barker MS, Rieseberg LH, Otto SP (2011) Recently formed polyploid plants diversify at lower rates. Science 333:1257

    Article  CAS  PubMed  Google Scholar 

  • Moreno NC, Amarilla LD, Las Peñas ML, Bernardello G (2015) Molecular cytogenetic insights into the evolution of the epiphytic genus Lepismium (Cactaceae) and related genera. Bot J Linn Soc 177:263–277

    Article  Google Scholar 

  • Nyffeler R (2007) The closest relatives of cacti: insights from phylogenetic analyses of chloroplast and mitochondrial sequences with special emphasis on relationships in the tribe Anacampseroteae. Am J Bot 94:89–101

    Article  CAS  PubMed  Google Scholar 

  • Nyffeler R, Eggli U (2010) Disintegrating portulacaceae: a new familial classification of the suborder portulacineae (Caryophyllales) based on molecular and morphological data. Taxon 59(1):227–240

    Article  Google Scholar 

  • Nyffeler R, Eggli U, Ogburn M, Edwards E (2008) Variations on a theme: repeated evolution of succulent life forms in the Portulacineae (Caryophyllales). Haseltonia 14:26–36

    Article  Google Scholar 

  • Ocampo G, Columbus JT (2010) Molecular phylogenetics of suborder Cactineae (Caryophyllales), including insights into photosyntetic diversification and historical biogeography. Am J Bot 97:1827–1847

    Article  CAS  PubMed  Google Scholar 

  • Ocampo G, Columbus JT (2012) Molecular phylogenetics, historical biogeography, and chromosome number evolution of Portulaca (Portulacaceae). Mol Phylogenet Evol 63(1):97–112

    Article  PubMed  Google Scholar 

  • Ogburn RM, Edwards ETJ (2009) Anatomical variation in Cactaceae and relatives: trait lability and evolutionary innovation. Am J Bot 96:391–408

    Article  PubMed  Google Scholar 

  • Olowokudejo JD. (1980) Systematic studies in the genus Biscutella L. (Cruciferae): 424 p. University of Reading (unpublished Ph. D. thesis)

  • Pellicer J, Kelly LJ, Leitch IJ, Zomlefer WB, Fay MF (2014) A universe of dwarfs and giants: genome size and chromosome evolution in the monocot family Melanthiaceae. New Phytol 201(4):1484–1497

    Article  CAS  PubMed  Google Scholar 

  • Peruzzi L (2013) x’ is not a bias, but a number with real biological significance. Journal Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, Official Journal of the Societa Botanica Italiana 147:1238–1241

    Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Rambaut A (2009) FigTree v1. 3.1: tree figure drawing tool. http://tree.bio.ed.ac.uk/software/figtree. Accessed 15, 2016

  • Ribeiro T, Buddenhagen CE, Thomas WW, Souza G, Pedrosa-Harand A (2017) Are holocentrics doomed to change? Limited chromosome number variation in Rhynchospora Vahl (Cyperaceae). Protoplasma 255(1):263–272

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Sharma AK, Bhattacharyya NK (1956) Cytogenetics of some members of Portulacaceae and related families, Caryologia. International Journal of Cytology, Cytosystematics and Cytogenetics 8(2):257–274

    Google Scholar 

  • Soltis PS, Soltis DE (2000) The role of genetic and genomic attributes in the success of polyploids. Proc Natl Acad Sci U S A 97(13):7051–7057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soltis DE, Visger CJ, Soltis PS (2014) The polyploidy revolution then... and now: Stebbins revisited. Am J Bot 101(7):1057–1078

    Article  PubMed  Google Scholar 

  • Steiner E (1944) Cytogenetic studies on Talinum and Portulaca. Bot Gaz 105:374–379

    Article  Google Scholar 

  • Stevens PF (2001) Angiosperm phylogeny website, version 12. Acessado em: julho de 2016. Disponível em: http://www.mobot.org/MOBOT/research/APweb/

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner BL (1994) Chromosome numbers and their phyletic interpretation. In: Behnke HD, Mabry TJ (eds) Caryophyllales: evolution and systematics. Springer-Verlag, Berlin, pp 27–43

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank the Laboratório de Genetica e Inovação (UFRPE) for providing the infrastructure necessary for this study and Laboratório de Citogenética e Evolução Vegetal (UFPE) for the technical support in bioinformatics analyses.

Funding

This study was supported by a research grant from the Cordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES). Finance code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Angélica Oliveira Marinho.

Additional information

Handling Editor: Peter Nick

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 3.38 mb)

ESM 2

(3.03 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marinho, M.A.O., Souza, G., Felix, L.P. et al. Comparative cytogenetics of the ACPT clade (Anacampserotaceae, Cactaceae, Portulacaceae, and Talinaceae): a very diverse group of the suborder Cactineae, Caryophyllales. Protoplasma 256, 805–814 (2019). https://doi.org/10.1007/s00709-018-01334-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-018-01334-2

Keywords

Navigation