Skip to main content
Log in

Aminolevulinic acid and nitric oxide regulate oxidative defense and secondary metabolisms in canola (Brassica napus L.) under drought stress

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

To minimize the damaging effects of stresses, plant growth regulators (PGRs) are widely used to sustain the plant life under stress-prone environments. So, a study was carried out to evaluate the response of two canola (Brassica napus L.) cultivars, Dunkeld and Cyclone, to foliar-applied two potential PGRs, nitric oxide (NO) and 5-aminolevulinic acid, under water deficit conditions. In this study, the levels of NO and ALA used were 0.02 and 0.895 mM, respectively. Plants of both canola cultivars were subjected to control (100% field capacity) and water deficit (60% field capacity). Drought stress significantly decreased growth, chlorophyll pigments, relative water contents (RWC), and soluble proteins, while it increased relative membrane permeability (RMP), proline, glycinebetaine (GB), malondialdehyde (MDA), total phenolics, and activities of catalase (CAT) and peroxidase (POD) enzymes in both cultivars. Foliar application of PGRs improved growth, chlorophyll a, GB, total phenolics, CAT activity, and total soluble proteins, while it decreased RMP, MDA, and POD activity in both canola cultivars. Other physio-biochemical attributes such as chlorophyll b, RWC, hydrogen peroxide (H2O2) and proline contents as well as superoxide dismutase (SOD) activity remained unaffected due to application of PGRs. So, the results of the present study suggest that exogenous application of NO and ALA could be useful to enhance the drought tolerance of canola plants by up-regulating the oxidative defense system, osmoprotectant accumulation, and minimizing the lipid peroxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad P, Abdel Latef AA, Hashem A, Abd_Allah EF, Gucel S, Tran LSP (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci 7:347

  • Akhtar N, Iqbal J, Husnain SA, Arshad M, Jahangeer A, Ahmad ZA (2013) Effect of irrigation scheduling on oats forage production. J Agric Res 51(2):141–148

    Google Scholar 

  • Akram NA, Ashraf M (2013) Regulation in plant stress tolerance by a potential plant growth regulator, 5-aminolevolinic acid (ALA). J Plant Growth Regul 32:663–679

    Article  CAS  Google Scholar 

  • Akram NA, Ashraf M, Al-Qurainy F (2012) Aminolevulinic acid-induced regulation in some key physiological attributes and activities of antioxidant enzymes in sunflower (Helianthus annuus L.) under saline regimes. Sci Hort 142:143–148

    Article  CAS  Google Scholar 

  • Akram NA, Waseem M, Ameen R, Ashraf M (2016) Trehalose pretreatment induces drought tolerance in radish (Raphanus sativus L.) plants: some key physio-biochemical traits. Acta Physiol Plant 38:3

    Article  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts, polyphenol oxidase in Beta vulgaris L. J Plant Physiol 24:1–15

    Article  CAS  Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Envron Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • Ashraf M, Orooj A (2006) Salt stress effects on growth, ion accumulation and seed oil concentration in an arid zone traditional medicinal plant ajwain (Trachyspermum ammi [L.] Sprague). J Arid Environ 64:209–220

    Article  Google Scholar 

  • Ashraf M, Athar HR, Harris PJC, Kwon TR (2008) Some prospective strategies for improving crop salt tolerance. Adv Agron 97:45–110

    Article  CAS  Google Scholar 

  • Ashraf M, Akram NA, Arteca RN, Foolad MR (2010) The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Crit Rev Plant Sci 29:162–190

    Article  CAS  Google Scholar 

  • Ashraf M, Akram NA, Al-Qurainy F, Foolad MR (2011) Drought tolerance: roles of organic osmolytes, growth regulators and mineral nutrients. Adv Agron 111:249–296

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • deCarvalho MHC (2008) Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav 3(3):156–165

    Article  Google Scholar 

  • Caverzan A, Casassola A, Brammer SP (2016) Antioxidant responses of wheat plants under stress. Genet Mol Biol 39:1–6

    Article  PubMed  PubMed Central  Google Scholar 

  • Chance B, Maehly A (1955) Assay of catalase and peroxidase. Meth Enzymol 2:764–817

    Article  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • Demiral T, Hamurcu M, Avsaroglu ZZ, Calik M, Almas S, Hakki EE, Topal A, Gezgin S, Bell RW (2014) Implication of nitric oxide on growth and development of wheat under drought conditions. J Biotechnol 185:S33

    Article  Google Scholar 

  • Din J, Khan SU, Ali I, Gurmani AR (2011) Physiological and agronomic response of canola varieties to drought stress. J Anim Plant Sci 21:78–28

    Google Scholar 

  • Dong YJ, Jinc SS, Liu S, Xu LL, Kong J (2014) Effects of exogenous nitric oxide on growth of cotton seedlings under NaCl stress. J Soil Sci Plant Nutr 14:1–13

    Google Scholar 

  • Elsheery NI, Cao KF (2008) Gas exchange, chlorophyll fluorescence, and osmotic adjustment in two mango cultivars under drought stress. Acta Physiol Plant 30:769–777

    Article  CAS  Google Scholar 

  • Fu J, Chu X, Sun Y, Miao Y, Xu Y, Hu T (2015) Nitric oxide mediates 5-aminolevulinic acid-induced antioxidant defense in leaves of Elymus nutans Griseb. exposed to chilling stress. PLoS One 10(7): e0130367

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Grieve CM, Grattan SR (1983) Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70:303–307

    Article  CAS  Google Scholar 

  • Hamurcu M, Demiral T, Calik M, Avsaroglu ZZ, Celik O, Hakki EE, Topal A, Gezgin S, Bell RW (2014) Effect of nitric oxide on the tolerance mechanism of bread wheat genotypes under drought stress. J Biotechnol 185:S33

    Article  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2011) Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings. Plant Biotechnol Rep 5:353

    Article  Google Scholar 

  • Hasanuzzaman M, Hossain MA, da Silva JAT, Fujita M (2012) Plant responses and tolerance to abiotic oxidative stress: antioxidant defenses is a key factors. In: Bandi V, Shanker AK, Shanker C, Mandapaka M (eds) Crop stress and its management: perspectives and strategies. Springer, Berlin, pp 261–316

    Chapter  Google Scholar 

  • Hatamzadeh A, Nalousi AM, Ghasemnezhad M, Biglouei MH (2014) The potential of nitric oxide forreducing oxidative damage induced by drought stress in two turf grass species, creeping bentgrass and tall fescue. Grass Forage Sci 70:538–548

    Article  Google Scholar 

  • Hatzig S, Zaharia LI, Abrams S, Hohmann M, Legoahec L, Bouchereau A, Nesi N, Snowdon RJ (2014) Early osmotic adjustment responses in drought-resistant and drought-sensitive oilseed rape. J Integr Plant Biol 56:797–809

    Article  CAS  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi Y, Yamaguchi H, Yuasa T, Iwaya-Inoue M, Arima S, Zheng SH (2011) Hydrogen peroxide spraying alleviates drought stress in soybean plants. J Plant Physiol 168:1562–1567

    Article  CAS  PubMed  Google Scholar 

  • Jones MM, Turner NC (1978) Osmotic adjustment in leaves of sorghum in response to water deficits. Plant Physiol 61(1):122–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Julkenen-Titto R (1985) Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. Agric Food Chem 33:213–217

    Article  Google Scholar 

  • Kausar F, Shahbaz M (2013) Interactive effect of foliar application of nitric oxide (NO) and salinity on wheat (Triticum aestivum L.). Pak J Bot 45(SI):67-73

  • Kausar F, Shahbaz M, Ashraf M (2013) Protection role of foliar-applied nitric oxide in Triticum aestivum under saline stress. Turk J Bot 37:1155–1165

    Article  CAS  Google Scholar 

  • Kaya C, Sonmez O, Aydemir S, Dikilitaş M (2013) Mitigation effects of glycinebetaine on oxidative stress and some key growth parameters of maize exposed to salt stress. Turk J Agric Forester 37:188–194

    CAS  Google Scholar 

  • Khan MA, Ashraf MY, Mujtaba SM, Shirazi MU, Khan MA, Shereen A, Mumtaz S, Siddiqui MA, Kaleri GM (2010) Evaluation of high yielding canola type Brassica genotypes/mutants for drought tolerance using physiological indices as screening tool. Pak J Bot 42(6):3807–3816

    Google Scholar 

  • Kong J, Dong YJ, Xu LL, Liu S, Bai XY (2014) Effects of foliar application of salicylic acid and nitric oxide in alleviating iron deficiency induced chlorosis of Arachis hypogaea L. Bot Stud 55:1–9

    Article  Google Scholar 

  • Kordi S, Mehdi S, Fardin G (2013) Induction of drought tolerance in sweet basil (Ocimum basilicum L.) by salicylic acid. Int J Agric Food Res 2:18–26

    Google Scholar 

  • Kosar F, Akram NA, Ashraf M (2015) Exogenously-applied 5-aminolevulinic acid modulates some key physiological characteristics and antioxidative defense system in spring wheat (Triticum aestivum L.) seedlings under water stress. South Afr J Bot 96:71–77

    Article  CAS  Google Scholar 

  • Laspina NV, Groppa MD, Tomaro ML, Benavides MP (2005) Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci 169:323–330

    Article  CAS  Google Scholar 

  • Latif M, Akram NA, Ashraf M (2016) Regulation of some biochemical attributes in drought-stressed cauliflower (Brassica oleracea L.) by seed pre-treatment with ascorbic acid. J Hortic Sci Biotechnol 91(2):129–137

    Article  CAS  Google Scholar 

  • Leterrier M, Valderrama R, Chaki M, Airaki M, Palma JM, Barroso JB, Corpas FJ (2012) Function of nitric oxide under environmental stress conditions. In: Khan NA, Nazar R, Iqbal N, Anjum NA (eds) Phytohormones and abiotic stress tolerance in plants. Springer, Berlin, pp 99–113

    Chapter  Google Scholar 

  • Li D, Zhang J, Sun W, Li Q, Dai A, Bai J (2011) 5-Aminolevulinic acid pretreatment mitigates drought stress of cucumber leaves through altering antioxidant enzyme activity. Sci Hort 130:820–828

    Article  CAS  Google Scholar 

  • Liu D, Pei Z, Naeem M, Ming D, Liu H, Khan F et al (2011) 5-Aminolevulinic acid activates antioxidative defence system and seedling growth in Brassica napus L. under water-deficit stress. J Agron Crop Sci 197:284–295

    Article  CAS  Google Scholar 

  • Liu D, Wu LT, Naeem MS, Liu HB, Deng XQ, Xu L et al (2013) 5-Aminolevulinic acid enhances photosynthetic gas exchange, chlorophyll fluorescence and antioxidant system in oilseed rape under drought stress. Acta Physiol Plant 35:2747–2759

    Article  CAS  Google Scholar 

  • Lotfi R, Pessarakli M, Gharavi-Kouchebaghi P, Khoshvaghti H (2015) Physiological responses of Brassica napus to fulvic acid under water stress: chlorophyll a fluorescence and antioxidant enzyme activity. Crop J 3(5:434–439

    Article  Google Scholar 

  • Lum MS, Hanafi MM, Rafii YM, Akmar ASN (2014) Effect of drought stress on growth, proline and antioxidant enzyme activities of upland rice. J Anim Plant Sci 24:1487–1493

    Google Scholar 

  • Mafakheri A, Siosemardeh A, Bahramnejad B, Struik PC, Sohrabi Y (2010) Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust J Crop Sci 4(8):580–585

    CAS  Google Scholar 

  • Matilla-Vázquez MA, Matilla AJ (2012) Role of H 2 O 2 as signaling molecule in plants, In: Environmental adaptations and stress tolerance of plants in the era of climate change. 2012. Springer, New York 361–380

  • Moaveni P, Ebrahimi A, Farahani HA (2010) Studying of oil yield variations in winter rapeseed (Brassica napus L.) cultivars under drought stress. J Agric Biotechnol Sustain Dev 2(5):71–75

    Google Scholar 

  • Mukherjee SP, Chouduri MA (1983) Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant 58:166–170

    Article  CAS  Google Scholar 

  • Naeem MS, Jin ZL, Wan GL, Liu D, Liu HB, Yoneyama K, Zhou WJ (2010) 5-Aminolevulinic acid improves photosynthetic gas exchange capacity and ion uptake under salinity stress in oilseed rape (Brassica napus L.) Plant Soil 332:405–415

    Article  CAS  Google Scholar 

  • Naeem MS, Warusawitharana H, Liu H, Liu D, Ahmad R, Waraich EA, Xu L, Zhou WJ (2012) 5-Aminolevulinic acid alleviates the salinity-induced changes in Brassica napus as revealed by the ultra-structural study of chloroplast. Plant Physiol Biochem 57:84–92

    Article  CAS  PubMed  Google Scholar 

  • Nawaz K, Ashraf MJ (2010) Exogenous application of glycinebetaine modulates activities of antioxidants in maize plants subjected to salt stress. J Agron Crop Sci 196(1):28

    Article  CAS  Google Scholar 

  • Nelson N (1944) Photometric adaptation of the somogyi method for determination of glucose. J Biol Chem 153:375–380

    CAS  Google Scholar 

  • Noreen Z, Ashraf M (2009) Assessment of variation in antioxidative defense system in salt-treated pea (Pisum sativum L.) cultivars and its putative use as salinity tolerance markers. J Plant Physiol 166:1764–1774

    Article  CAS  PubMed  Google Scholar 

  • Ren J, Sun LN, Zhang QY, Song XS (2016) Drought tolerance is correlated with the activity of antioxidant enzymes in Cerasus humilis seedlings. Biomed Res Int 2016:9

    Google Scholar 

  • Saleem MY, Akhtar KP, Asghar M, Iqbal Q, Rehman A (2011) Genetic control of late blight, yield and some yield related traits in tomato (Solanum lycopersicum L.) Pak J Bot 43(5):2601–2605

    Google Scholar 

  • Santisree P, Bhatnagar-Mathur P, Sharma KK (2015) NO to drought-multifunctional role of nitric oxide in plant drought: do we have all the answers? Plant Sci 239:44–55

    Article  CAS  PubMed  Google Scholar 

  • Shafiq S, Akram NA, Ashraf M, Arshad A (2014) Synergistic effects of drought and ascorbic acid on growth, mineral nutrients and oxidative defense system in canola (Brassica napus L.) plants. Acta Physiol Plant 36:1539–1553

    Article  CAS  Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Manivannan P, Panneerselvam R, Shao MA (2009) Understanding water deficit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Crit Rev Biotechnol 29:131–151

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Basalah MO (2011) Interactive effect of calcium and gibberellin on nickel tolerance in relation to antioxidant systems in Triticum aestivum L. Protoplasma 248:503–511

    Article  CAS  PubMed  Google Scholar 

  • Tunc-Ozdemir M, Miller G, Song L, Kim J, Sodek A, Koussevitzky S, Misra AN, Mittler R, Shintani D (2009) Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis. Plant Physiol 151:421–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullah F, Bano A, Nosheen A (2012) Effects of plant growth regulators on growth and oil quality of canola (Brassica napus L.) under drought stress. J Bot 44:1873–1880

    CAS  Google Scholar 

  • Ullah S, Kolo Z, Egbichi I, Keyster M, Ludidi N (2016) Nitric oxide influences glycine betaine content and ascorbate peroxidase activity in maize. South Afr J Bot 105:218–225

    Article  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective roles of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wang M, Li Q, Fu S, Xiao D, Dong B (2005) Effects of exogenous nitric oxide on drought-resistance of poplar. Chin J Appl Ecol 16:805–810

    CAS  Google Scholar 

  • Watanabe K, Nishihara E, Watanabe S et al (2006) Enhancement of growth and fruit maturity in 2-year-old grapevines cv. Delaware by 5-aminolevulinic acid. Plant Growth Regul 49:35–42

    Article  CAS  Google Scholar 

  • Wu S, Hu C, Tan Q, Li L, Shi K, Zheng Y, Sun X (2015) Drought stress tolerance mediated by zinc-induced antioxidative defense and osmotic adjustment in cotton (Gossypium hirsutum). Acta Physiol Plant 37:167

    Article  Google Scholar 

  • Xu J, Yin H, Li Y, Liu X (2010) Nitric oxide is associated with long-term zinc tolerance in Solanum nigrum. Plant Physiol 154:1319–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang G, Rhodes G, Joly RG (1996) Effects of high temperature on membrane stability and chlorophyll fluorescence in glycinebetaine-deficient and glycinebetaine-containing maize lines. Aust J Plant Physiol 23:437–443

    Article  CAS  Google Scholar 

  • Yang SJ, Zhang ZL, Xue YX, Zhang ZF, Shi SY (2014) Arbuscular mycorrhizal fungi increase salt tolerance of apple seedlings. Bot Stud 55:70

    Article  PubMed  PubMed Central  Google Scholar 

  • Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57:508–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Peng J, Chen TT, Zhao XH, Zhang SP, Liu SD, Dong HL, Feng L, Yu SX (2014) Effect of drought stress on lipid peroxidation and proline content in cotton roots. J Anim Plant Sci 24:1729–1736

    Google Scholar 

  • Zhang L, Zheng P, Ruan Z, Tian L, Ashraf M (2015) Nitric oxide accumulation and glycinebetaine metabolism in two osmotically stressed maize cultivars supplied with different nitrogen forms. Biol Plant 59:183–186

    Article  CAS  Google Scholar 

  • Zhen A, Bie ZI, Huang Y, Liu ZY, Fan MI (2012) Effects of 5-aminolevulinic acid on the H2O2 content and antioxidative enzyme gene expression in NaCl-treated cucumber seedlings. Biol Plant 56:566–570

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nudrat Aisha Akram.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Néstor Carrillo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, N.A., Iqbal, M., Muhammad, A. et al. Aminolevulinic acid and nitric oxide regulate oxidative defense and secondary metabolisms in canola (Brassica napus L.) under drought stress. Protoplasma 255, 163–174 (2018). https://doi.org/10.1007/s00709-017-1140-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-017-1140-x

Keywords

Navigation