Skip to main content

Advertisement

Log in

Variations on a theme: plant autophagy in comparison to yeast and mammals

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Autophagy is an evolutionary conserved process of bulk degradation and nutrient sequestration that occurs in all eukaryotic cells. Yet, in recent years, autophagy has also been shown to play a role in the specific degradation of individual proteins or protein aggregates as well as of damaged organelles. The process was initially discovered in yeast and has also been very well studied in mammals and, to a lesser extent, in plants. In this review, we summarize what is known regarding the various functions of autopahgy in plants but also attempt to address some specific issues concerning plant autophagy, such as the insufficient knowledge regarding autophagy in various plant species other than Arabidopsis, the fact that some genes belonging to the core autophagy machinery in various organisms are still missing in plants, the existence of autophagy multigene families in plants and the possible operation of selective autophagy in plants, a study that is still in its infancy. In addition, we point to plant-specific autophagy processes, such as the participation of autophagy during development and germination of the seed, a unique plant organ. Throughout this review, we demonstrate that the use of innovative bioinformatic resources, together with recent biological discoveries (such as the ATG8-interacting motif), should pave the way to a more comprehensive understanding of the multiple functions of plant autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AIM:

ATG8-interacting motif

ATG:

Autophagy

BLAST:

Basic local alignment search tool

ER:

Endoplasmic reticulum

GABARAP:

GABA receptor-associated protein

GATE-16:

Golgi-associated ATPase enhancer of 16 kDa

GFP:

Green fluorescent protein

LC3:

Light chain 3 microtubule-associated protein

LIR:

LC3-interacting region

NBR1:

Neighbor of BRCA1

p62/SQSTM1:

Sequestosome 1

PAS:

Phagophore assembly site

PCD:

Programmed cell death

PI3 kinase:

Phosphoinositide 3 kinase

PI(3)P:

Phosphatidylinositol 3 phosphate

PSV:

Protein storage vacuole

RNAi:

RNA interference

ROS:

Reactive oxygen species

TOR:

Target of rapamycin

RT-PCR:

Real-time polymerase chain reaction

RUBISCO:

Ribulose-1,5-bisphosphate carboxylase oxygenase

TSPO:

Tryptophan-rich sensory protein

Ub:

Ubiquitin

WIPI:

WD repeat protein-interacting phosphoinositides

References

  • Angelovici R, Fait A, Zhu X, Szymanski J, Feldmesser E, Fernie AR, Galili G (2009) Deciphering transcriptional and metabolic networks associated with lysine metabolism during Arabidopsis seed development. Plant Physiol 151(4):2058–2072

    Article  PubMed  CAS  Google Scholar 

  • Bassham DC (2002) Golgi-independent trafficking of macromolecules to the plant vacuole. Adv Bot Res 38:65–91

    Article  CAS  Google Scholar 

  • Bassham DC (2007) Plant autophagy-more than a starvation response. Curr Opin Plant Biol 10(6):587–593

    Article  PubMed  CAS  Google Scholar 

  • Bassham DC (2009) Function and regulation of macroautophagy in plants. Biochim Biophys Acta 1793(9):1397–1403

    Article  PubMed  CAS  Google Scholar 

  • Bassham DC, Laporte M, Marty F, Moriyasu Y, Ohsumi Y, Olsen LJ, Yoshimoto K (2006) Autophagy in development and stress responses of plants. Autophagy 2(1):2–11

    PubMed  CAS  Google Scholar 

  • Behrends C, Sowa ME, Gygi SP, Harper JW (2010) Network organization of the human autophagy system. Nature 466(703):68–76

    Article  PubMed  CAS  Google Scholar 

  • Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171(4):603–614

    Article  PubMed  CAS  Google Scholar 

  • Burman C, Ktistakis NT (2010) Regulation of autophagy by phosphatidylinositol 3-phosphate. FEBS Lett 584(7):1302–1312

    Article  PubMed  CAS  Google Scholar 

  • Cacas JL (2010) Devil inside: does plant programmed cell death involve the endomembrane system? Plant Cell Environ 33(9):1453–1473

    PubMed  CAS  Google Scholar 

  • Cacas JL, Diamond M (2009) Is the autophagy machinery an executioner of programmed cell death in plants? Trends Plant Sci 14(6):299–300

    Article  PubMed  CAS  Google Scholar 

  • Cebollero E, Reggiori F (2009) Regulation of autophagy in yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1793(9):1413–1421

    Article  PubMed  CAS  Google Scholar 

  • Chen MH, Liu LF, Chen YR, Wu HK, Yu SM (1994) Expression of alpha-amylases, carbohydrate metabolism, and autophagy in cultured rice cells is coordinately regulated by sugar nutrient. Plant J 6(5):625–636

    Article  PubMed  CAS  Google Scholar 

  • Chrispeels MJ, Herman EM (2000) Endoplasmic reticulum-derived compartments function in storage and as mediators of vacuolar remodeling via a new type of organelle, precursor protease vesicles. Plant Physiol 123(4):1227–1234

    Article  PubMed  CAS  Google Scholar 

  • Chung T, Suttangkakul A, Vierstra RD (2009) The ATG autophagic conjugation system in maize: ATG transcripts and abundance of the ATG8-lipid adduct are regulated by development and nutrient availability. Plant Physiol 149(1):220–234

    Article  PubMed  CAS  Google Scholar 

  • Chung T, Phillips AR, Vierstra RD (2010) ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12A AND ATG12B loci. Plant J 62(3):483–493

    Article  PubMed  CAS  Google Scholar 

  • Clague MJ, Urbé S (2010) Ubiquitin: same molecule, different degradation pathways. Cell 143(5):682–685

    Article  PubMed  CAS  Google Scholar 

  • Crespo JL, Díaz-Troya S, Florencio FJ (2005) Inhibition of target of rapamycin signaling by rapamycin in the unicellular green alga Chlamydomonas reinhardtii. Plant Physiol 139(4):1736–1749

    Article  PubMed  CAS  Google Scholar 

  • Doelling JH, Walker JM, Friedman EM, Thompson AR, Vierstra RD (2002) The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. J Biol Chem 277(36):33105–33114

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Troya S, Florencio FJ, Crespo JL (2008a) Target of rapamycin and LST8 proteins associate with membranes from the endoplasmic reticulum in the unicellular green alga Chlamydomonas reinhardtii. Eukaryot Cell 7(2):212–222

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Troya S, Pérez-Pérez ME, Florencio FJ, Crespo JL (2008b) The role of TOR in autophagy regulation from yeast to plants and mammals. Autophagy 4(7):851–865

    PubMed  Google Scholar 

  • Farré JC, Krick R, Subramani S, Thumm M (2009) Turnover of organelles by autophagy in yeast. Curr Opin Cell Biol 21(4):522–530

    Article  PubMed  CAS  Google Scholar 

  • Fujiki Y, Yoshimoto K, Ohsumi Y (2007) An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination. Plant Physiol 143(3):1132–1139

    Article  PubMed  CAS  Google Scholar 

  • Fujioka Y, Noda NN, Fujii K, Yoshimoto K, Ohsumi Y, Inagaki F (2008) In vitro reconstitution of plant Atg8 and Atg12 conjugation systems essential for autophagy. J Biol Chem 283(4):1921–1928

    Article  PubMed  CAS  Google Scholar 

  • Galili G, Altschuler Y, Levanony H (1993) Assembly and transport of seed storage proteins. Trends Cell Biol 3(12):437–442

    Article  PubMed  CAS  Google Scholar 

  • Gao W, Kang JH, Liao Y, Ding WX, Gambotto AA, Watkins SC, Liu YJ, Stolz DB, Yin XM (2010) Biochemical isolation and characterization of the tubulovesicular LC3-positive autophagosomal compartment. J Biol Chem 285(2):1371–1383

    Article  PubMed  CAS  Google Scholar 

  • Hanaoka H, Noda T, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Ohsumi Y (2002) Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol 129(3):1181–1193

    Article  PubMed  CAS  Google Scholar 

  • Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A (2009) A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 11(12):1433–1437

    Article  PubMed  CAS  Google Scholar 

  • Hayward AP, Dinesh-Kumar SP (2010) What can plant autophagy do for an innate immune response? Annu Rev Phytopathol 49:4.1–4.20

    Google Scholar 

  • Hayward AP, Tsao J, Dinesh-Kumar SP (2009) Autophagy and plant innate immunity: defense through degradation. Semin Cell Dev Biol 20(9):1041–1047

    Article  PubMed  CAS  Google Scholar 

  • Herman EM, Larkins BA (1999) Protein storage bodies and vacuoles. Plant Cell 11(4):601–614

    Article  PubMed  CAS  Google Scholar 

  • Hillmer S, Movafeghi A, Robinson DG, Hinz G (2001) Vacuolar storage proteins are sorted in the cis-cisternae of the pea cotyledon Golgi apparatus. J Cell Biol 152(1):41–50

    Article  PubMed  CAS  Google Scholar 

  • Hofius D, Schultz-Larsen T, Joensen J, Tsitsigiannis DI, Petersen NH, Mattsson O, Jørgensen LB, Jones JD, Mundy J, Petersen M (2009) Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell 137(4):773–783

    Article  PubMed  CAS  Google Scholar 

  • Hofmann NR (2011) How a transient response becomes transient: autophagy cleans up after abscisic acid. Plant Cell 23(2):429

    Google Scholar 

  • Inoue Y, Suzuki T, Hattori M, Yoshimoto K, Ohsumi Y, Moriyasu Y (2006) AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells. Plant Cell Physiol 47(12):1641–1652

    Article  PubMed  CAS  Google Scholar 

  • Ishida H, Yoshimoto K, Izumi M, Reisen D, Yano Y, Makino A, Ohsumi Y, Hanson MR, Mae T (2008) Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Physiol 148(1):142–155

    Article  PubMed  CAS  Google Scholar 

  • Itakura E, Kishi C, Inoue K, Mizushima N (2008) Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 19(12):5360–5372

    Article  PubMed  CAS  Google Scholar 

  • Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7(3):279–296

    Article  PubMed  CAS  Google Scholar 

  • Jung CH, Ro SH, Cao J, Otto NM, Kim DH (2010) mTOR regulation of autophagy. FEBS Lett 584(7):1287–1295

    Article  PubMed  CAS  Google Scholar 

  • Kametaka S, Okano T, Ohsumi M, Ohsumi Y (1998) Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. J Biol Chem 273(35):22284–22291

    Article  PubMed  CAS  Google Scholar 

  • Ketelaar T, Voss C, Dimmock SA, Thumm M, Hussey PJ (2004) Arabidopsis homologues of the autophagy protein Atg8 are a novel family of microtubule binding proteins. FEBS Lett 567(2–3):302–306

    Article  PubMed  CAS  Google Scholar 

  • Kihara A, Noda T, Ishihara N, Ohsumi Y (2001) Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 152(3):519–530

    Article  PubMed  CAS  Google Scholar 

  • Kirkin V, Lamark T, Sou YS, Bjørkøy G, Nunn JL, Bruun JA, Shvets E, McEwan DG, Clausen TH, Wild P, Bilusic I, Theurillat JP, Øvervatn A, Ishii T, Elazar Z, Komatsu M, Dikic I, Johansen T (2009a) A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 33(4):505–516

    Article  PubMed  CAS  Google Scholar 

  • Kirkin V, McEwan DG, Novak I, Dikic I (2009b) A role for ubiquitin in selective autophagy. Mol Cell 34(3):259–269

    Article  PubMed  CAS  Google Scholar 

  • Kittler JT, Rostaing P, Schiavo G, Fritschy JM, Olsen R, Triller A, Moss SJ (2001) The subcellular distribution of GABARAP and its ability to interact with NSF suggest a role for this protein in the intracellular transport of GABA(A) receptors. Mol Cell Neurosci 18(1):13–25

    Article  PubMed  CAS  Google Scholar 

  • Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169(3):425–434

    Article  PubMed  CAS  Google Scholar 

  • Krick R, Henke S, Tolstrup J, Thumm M (2008) Dissecting the localization and function of Atg18, Atg21 and Ygr223c. Autophagy 4(7):896–910

    PubMed  CAS  Google Scholar 

  • Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432(7020):1032–1036

    Article  PubMed  CAS  Google Scholar 

  • Kwon SI, Park OK (2008) Autophagy in plants. J Plant Biol 51(5):313–320

    Article  CAS  Google Scholar 

  • Lamark T, Johansen T (2010) Autophagy: links with the proteasome. Curr Opin Cell Biol 22(2):192–198

    Article  PubMed  CAS  Google Scholar 

  • Lenz HD, Haller E, Melzer E, Kober K, Wurster K, Stahl M, Bassham DC, Vierstra RD, Parker JE, Bautor J, Molina A, Escudero V, Shindo T, van der Hoorn RA, Gust AA, Nürnberger T (2011) Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. Plant J 66(5):818–830

    Google Scholar 

  • Liu Y, Schiff M, Czymmek K, Tallóczy Z, Levine B, Dinesh-Kumar SP (2005) Autophagy regulates programmed cell death during the plant innate immune response. Cell 121(4):567–577

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Xiong Y, Bassham DC (2009) Autophagy is required for tolerance of drought and salt stress in plants. Autophagy 5(7):954–963

    Article  PubMed  CAS  Google Scholar 

  • Love AJ, Milner JJ, Sadanandom A (2008) Timing is everything: regulatory overlap in plant cell death. Trends Plant Sci 13(11):589–595

    Article  PubMed  CAS  Google Scholar 

  • Mann SS, Hammarback JA (1994) Molecular characterization of light chain 3. A microtubule binding subunit of MAP1A and MAP1B. J Biol Chem 269(15):11492–11497

    PubMed  CAS  Google Scholar 

  • Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, Akira S, Noda T, Yoshimori T (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11(4):385–396

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga K, Morita E, Saitoh T, Akira S, Ktistakis NT, Izumi T, Noda T, Yoshimori T (2010) Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. J Cell Biol 190(4):511–521

    Article  PubMed  CAS  Google Scholar 

  • Meijer WH, van der Klei IJ, Veenhuis M, Kiel JA (2007) ATG genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathways also require organism-specific genes. Autophagy 3(2):106–116

    PubMed  CAS  Google Scholar 

  • Menand B, Desnos T, Nussaume L, Berger F, Bouchez D, Meyer C, Robaglia C (2002) Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc Natl Acad Sci U S A 99(9):6422–6427

    Article  PubMed  CAS  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R, Dutcher S, Fernández E, Fukuzawa H, González-Ballester D, González-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral JP, Riaño-Pachón DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen CJ, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martínez D, Ngau WC, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318(5848):245–250

    Article  PubMed  CAS  Google Scholar 

  • Mohrlüder J, Hoffmann Y, Stangler T, Hänel K, Willbold D (2007a) Identification of clathrin heavy chain as a direct interaction partner for the gamma-aminobutyric acid type A receptor associated protein. Biochemistry 46(50):14537–14543

    Article  PubMed  CAS  Google Scholar 

  • Mohrlüder J, Stangler T, Hoffmann Y, Wiesehan K, Mataruga A, Willbold D (2007b) Identification of calreticulin as a ligand of GABARAP by phage display screening of a peptide library. FEBS J 274(21):5543–5555

    Article  PubMed  CAS  Google Scholar 

  • Nakatogawa H, Ichimura Y, Ohsumi Y (2007) Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130(1):165–178

    Article  PubMed  CAS  Google Scholar 

  • Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T, Komatsu M, Otsu K, Tsujimoto Y, Shimizu S (2009) Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461(7264):654–658

    Article  PubMed  CAS  Google Scholar 

  • Noda NN, Kumeta H, Nakatogawa H, Satoo K, Adachi W, Ishii J, Fujioka Y, Ohsumi Y, Inagaki F (2008) Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 13(12):1211–1218

    Article  PubMed  CAS  Google Scholar 

  • Noda NN, Ohsumi Y, Inagaki F (2010) Atg8-family interacting motif crucial for selective autophagy. FEBS Lett 584(7):1379–1385

    Article  PubMed  CAS  Google Scholar 

  • Ohashi Y, Munro S (2010) Membrane delivery to the yeast autophagosome from the Golgi-endosomal system. Mol Biol Cell 21(22):3998–4008

    Article  PubMed  CAS  Google Scholar 

  • Okamoto T, Toyooka K, Minamikawa T (2001) Identification of a membrane-associated cysteine protease with possible dual roles in the endoplasmic reticulum and protein storage vacuole. J Biol Chem 276(1):742–751

    Article  PubMed  CAS  Google Scholar 

  • Okamoto K, Kondo-Okamoto N, Ohsumi Y (2009) Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell 17(1):87–97

    Article  PubMed  CAS  Google Scholar 

  • Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Øvervatn A, Bjørkøy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282(33):24131–24145

    Article  PubMed  CAS  Google Scholar 

  • Pankiv S, Alemu EA, Brech A, Bruun JA, Lamark T, Overvatn A, Bjørkøy G, Johansen T (2010) FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J Cell Biol 188(2):253–269

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Pérez ME, Florencio FJ, Crespo JL (2010) Inhibition of target of rapamycin signaling and stress activate autophagy in Chlamydomonas reinhardtii. Plant Physiol 152(4):1874–1888

    Article  PubMed  CAS  Google Scholar 

  • Phillips AR, Suttangkakul A, Vierstra RD (2008) The ATG12-conjugating enzyme ATG10 Is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics 178(3):1339–1353

    Article  PubMed  CAS  Google Scholar 

  • Polson HE, de Lartigue J, Rigden DJ, Reedijk M, Urbé S, Clague MJ, Tooze SA (2010) Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 6(4):506–522

    Article  CAS  Google Scholar 

  • Qin G, Ma Z, Zhang L, Xing S, Hou X, Deng J, Liu J, Chen Z, Qu LJ, Gu H (2007) Arabidopsis AtBECLIN 1/AtAtg6/AtVps30 is essential for pollen germination and plant development. Cell Res 17(3):249–263

    PubMed  CAS  Google Scholar 

  • Reumann S, Voitsekhovskaja O, Lillo C (2010) From signal transduction to autophagy of plant cell organelles: lessons from yeast and mammals and plant-specific features. Protoplasma 247(3–4):233–256

    Article  PubMed  Google Scholar 

  • Reyes FC, Chung T, Holding D, Jung R, Vierstra R, Otegui MS (2011) Delivery of prolamins to the protein storage vacuole in maize aleurone cells. Plant Cell 23(2):769–784

    Article  PubMed  CAS  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134(4):1683–1696

    Article  PubMed  CAS  Google Scholar 

  • Robinson D, Hinz G (1999) Golgi-mediated transport of seed storage proteins. Seed Sci Res 9:267–283

    Article  CAS  Google Scholar 

  • Robinson DG, Bäumer M, Hinz G, Hohl I (1997) Ultrastructure of the pea cotyledon Golgi apparatus: origin of dense vesicles and the action of brefeldin A. Protolplasma 200:198–209

    Article  CAS  Google Scholar 

  • Robinson D, Galili G, Herman E, Hillmer S (1998) Topical aspects of vacuolar protein transport: autophagy and prevacuolar compartments. J Exp Bot 49(325):1263–1270

    Article  CAS  Google Scholar 

  • Sagiv Y, Legesse-Miller A, Porat A, Elazar Z (2000) GATE-16, a membrane transport modulator, interacts with NSF and the Golgi v-SNARE GOS-28. EMBO J 19(4):1494–1504

    Article  PubMed  CAS  Google Scholar 

  • Satoo K, Noda NN, Kumeta H, Fujioka Y, Mizushima N, Ohsumi Y, Inagaki F (2009) The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. EMBO J 28(9):1341–1350

    Article  PubMed  CAS  Google Scholar 

  • Schwarten M, Mohrlüder J, Ma P, Stoldt M, Thielmann Y, Stangler T, Hersch N, Hoffmann B, Merkel R, Willbold D (2009) Nix directly binds to GABARAP: a possible crosstalk between apoptosis and autophagy. Autophagy 5(5):690–698

    Article  PubMed  CAS  Google Scholar 

  • Shin JH, Yoshimoto K, Ohsumi Y, Jeon JS, An G (2009) OsATG10b, an autophagosome component, is needed for cell survival against oxidative stresses in rice. Mol Cells 27(1):67–74

    Article  PubMed  CAS  Google Scholar 

  • Shintani T, Huang WP, Stromhaug PE, Klionsky DJ (2002) Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Dev. Cell 3:825–837

    Google Scholar 

  • Shintani T, Mizushima N, Ogawa Y, Matsuura A, Noda T, Ohsumi Y (1999) Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J 18(19):5234–5241

    Article  PubMed  CAS  Google Scholar 

  • Sláviková S, Shy G, Yao Y, Glozman R, Levanony H, Pietrokovski S, Elazar Z, Galili G (2005) The autophagy-associated Atg8 gene family operates both under favourable growth conditions and under starvation stresses in Arabidopsis plants. J Exp Bot 56(421):2839–2849

    Article  PubMed  Google Scholar 

  • Sláviková S, Ufaz S, Avin-Wittenberg T, Levanony H, Galili G (2008) An autophagy-associated Atg8 protein is involved in the responses of Arabidopsis seedlings to hormonal controls and abiotic stresses. J Exp Bot 59(14):4029–4043

    Article  PubMed  CAS  Google Scholar 

  • Su W, Ma H, Liu C, Wu J, Yang J (2006) Identification and characterization of two rice autophagy associated genes, OsAtg8 and OsAtg4. Mol Biol Rep 33(4):273–278

    Article  PubMed  CAS  Google Scholar 

  • Sun Q, Fan W, Chen K, Ding X, Chen S, Zhong Q (2008) Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase. Proc Natl Acad Sci U S A 105(49):19211–19216

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Ohsumi Y (2010) Current knowledge of the pre-autophagosomal structure (PAS). FEBS Lett 584(7):1280–1286

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y (2001) The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 20(21):5971–5981

    Article  PubMed  CAS  Google Scholar 

  • Svenning S, Lamark T, Krause K, Johansen T (2011) Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1. Autophagy 7(9):1–18.

    Google Scholar 

  • Tanida I (2011) Autophagosome formation and molecular mechanism of autophagy. Antioxid Redox Signal 14(11):2201–2214

    Article  PubMed  CAS  Google Scholar 

  • Thompson AR, Vierstra RD (2005) Autophagic recycling: lessons from yeast help define the process in plants. Curr Opin Plant Biol 8(2):165–173

    Article  PubMed  CAS  Google Scholar 

  • Thompson AR, Doelling JH, Suttangkakul A, Vierstra RD (2005) Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol 138(4):2097–2110

    Article  PubMed  CAS  Google Scholar 

  • Tooze SA, Yoshimori T (2010) The origin of the autophagosomal membrane. Nat Cell Biol 12(9):831–835

    Article  PubMed  CAS  Google Scholar 

  • Toyooka K, Okamoto T, Minamikawa T (2000) Mass transport of proform of a KDEL-tailed cysteine proteinase (SH-EP) to protein storage vacuoles by endoplasmic reticulum-derived vesicle is involved in protein mobilization in germinating seeds. J Cell Biol 148(3):453–464

    Article  PubMed  CAS  Google Scholar 

  • Toyooka K, Okamoto T, Minamikawa T (2001) Cotyledon cells of Vigna mungo seedlings use at least two distinct autophagic machineries for degradation of starch granules and cellular components. J Cell Biol 154(5):973–982

    Article  PubMed  CAS  Google Scholar 

  • Vanhee C, Zapotoczny G, Masquelier D, Ghislain M, Batoko H (2011) The Arabidopsis multistress regulator TSPO is a heme binding membrane protein and a potential scavenger of porphyrins via an autophagy-dependent degradation mechanism. Plant Cell 23(2):785–805

    Article  PubMed  CAS  Google Scholar 

  • Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A (2009) Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol 149(2):885–893

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Bedford FK, Brandon NJ, Moss SJ, Olsen RW (1999) GABA(A)-receptor-associated protein links GABA(A) receptors and the cytoskeleton. Nature 397(6714):69–72

    Article  PubMed  CAS  Google Scholar 

  • Weidberg H, Shvets E, Shpilka T, Shimron F, Shinder V, Elazar Z (2010) LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J 29(11):1792–1802

    Article  PubMed  CAS  Google Scholar 

  • Winter V, Stoger E (2011) The formation, function and fate of protein storage compartments in seeds. Protoplasma (in press)

  • Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9(10):1102–1109

    Article  PubMed  CAS  Google Scholar 

  • Xiong Y, Contento AL, Bassham DC (2005) AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. Plant J 42(4):535–546

    Article  PubMed  CAS  Google Scholar 

  • Xiong Y, Contento AL, Nguyen PQ, Bassham DC (2007) Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol 143(1):291–299

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y, Suzuki NN, Hanada T, Ichimura Y, Kumeta H, Fujioka Y, Ohsumi Y, Inagaki F (2007) The crystal structure of Atg3, an autophagy-related ubiquitin carrier protein (E2) enzyme that mediates Atg8 lipidation. J Biol Chem 282(11):8036–8043

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Noda NN, Nakatogawa H, Kumeta H, Ohsumi Y, Inagaki F (2010) Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3–Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway. J Biol Chem 285(38):29599–29607

    Article  PubMed  CAS  Google Scholar 

  • Yen WL, Legakis JE, Nair U, Klionsky DJ (2007) Atg27 is required for autophagy-dependent cycling of Atg9. Mol Biol Cell 18(2):581–593

    Article  PubMed  CAS  Google Scholar 

  • Ylä-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL (2009) 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5(8):1180–1185

    Article  PubMed  Google Scholar 

  • Yoshimoto K, Hanaoka H, Sato S, Kato T, Tabata S, Noda T, Ohsumi Y (2004) Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 16(11):2967–2983

    Article  PubMed  CAS  Google Scholar 

  • Yoshimoto K, Takano Y, Sakai Y (2010) Autophagy in plants and phytopathogens. FEBS Lett 584(7):1350–1358

    Article  PubMed  CAS  Google Scholar 

  • Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, Heintz N, Yue Z (2009) Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1–phosphatidylinositol-3-kinase complex. Nat Cell Biol 11(4):468–476

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the J & R Center for Scientific Research at the Weizmann Institute of Science and the Israeli Ministry of Agriculture for supporting our research on autophagy. GG is the incumbent of the Bronfman Chair of Plant Sciences.

Conflicts of Interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gad Galili.

Additional information

Handling Editor: David Robinson

Avin-Wittenberg and Honig contributed equally to this review.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avin-Wittenberg, T., Honig, A. & Galili, G. Variations on a theme: plant autophagy in comparison to yeast and mammals. Protoplasma 249, 285–299 (2012). https://doi.org/10.1007/s00709-011-0296-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-011-0296-z

Keywords

Navigation