Skip to main content
Log in

In silico prediction of drug targets in Vibrio cholerae

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Identification of potential drug targets is the first step in the process of modern drug discovery, subjected to their validation and drug development. Whole genome sequences of a number of organisms allow prediction of potential drug targets using sequence comparison approaches. Here, we present a subtractive approach exploiting the knowledge of global gene expression along with sequence comparisons to predict the potential drug targets more efficiently. Based on the knowledge of 155 known virulence and their coexpressed genes mined from microarray database in the public domain, 357 coexpressed probable virulence genes for Vibrio cholerae were predicted. Based on screening of Database of Essential Genes using blastn, a total of 102 genes out of these 357 were enlisted as vitally essential genes, and hence good putative drug targets. As the effective drug target is a protein which is only present in the pathogen, similarity search of these 102 essential genes against human genome sequence led to subtraction of 66 genes, thus leaving behind a subset of 36 genes whose products have been called as potential drug targets. The gene ontology analysis using Blast2GO of these 36 genes revealed their roles in important metabolic pathways of V. cholerae or on the surface of the pathogen. Thus, we propose that the products of these genes be evaluated as target sites of drugs against V. cholerae in future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Bergmann S, Ihmels J, Barkai N (2004) Similarities and differences in genome-wide expression data of six organisms. PLoS Biol 2:e9

    Article  PubMed  Google Scholar 

  • Camara M, Hardman A, Williams P, Milton D (2002) Quorum sensing in Vibrio cholerae. Nat Genet 32:217–218

    Article  PubMed  CAS  Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  PubMed  CAS  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  PubMed  CAS  Google Scholar 

  • Galperin MY, Koonin EV (1999) Searching for drug targets in microbial genomes. Curr Opin Biotechnol 10:571–578

    Article  PubMed  CAS  Google Scholar 

  • Garg A, Gupta D (2008) VirulentPred: a SVM based prediction method for virulent proteins in bacterial pathogens. BMC Bioinform 9:62

    Article  Google Scholar 

  • Groth P, Weiss B, Pohlenz HD, Leser U (2008) Mining phenotypes for gene function prediction. BMC Bioinform 9:136

    Article  Google Scholar 

  • Gray CP, Keck W (1999) Bacterial targets and antibiotics: genome-based drug discovery. Cell Mol Life Sci 56:779–787

    Article  PubMed  CAS  Google Scholar 

  • Hasan S, Daugelat S, Rao PS, Schreiber M (2006) Prioritizing genomic drug targets in pathogens: application to Mycobacterium tuberculosis. PLoS Comput Biol 2:e61

    Article  PubMed  Google Scholar 

  • Hefti FF (2008) Requirements for a lead compound to become a clinical candidate. BMC Neurosci 9:S7

    Article  PubMed  Google Scholar 

  • Higgins DE, Nazareno E, DiRita VJ (1992) The virulence gene activator ToxT from Vibrio cholerae is a member of the AraC family of transcriptional activators. J Bacteriol 174:6974–6980

    PubMed  CAS  Google Scholar 

  • Hubble J, Demeter J, Jin H, Mao M, Nitzberg M, Reddy TB, Wymore F, Zachariah ZK, Sherlock G, Ball CA (2009) Implementation of GenePattern within the Stanford Microarray Database. Nucleic Acids Res 37:D898–D901

    Article  PubMed  CAS  Google Scholar 

  • Judson N, Mekalanos JJ (2000) TnAraOut, a transposon-based approach to identify and characterize essential bacterial genes. Nat Biotechnol 18:740–745

    Article  PubMed  CAS  Google Scholar 

  • Knell RJ (2006) New gene, new disease. Heredity 97:315

    Article  PubMed  CAS  Google Scholar 

  • Kuruvilla FG, Shamji AF, Sternson SM, Hergenrother PJ, Schreiber SL (2002) Dissecting glucose signaling with diversity-oriented synthesis and small-molecule microarrays. Nature 416:653–657

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Hava DL, Waldor MK, Camilli A (1999) Regulation and temporal expression patterns of Vibrio cholerae virulence genes during infection. Cell 99:625–634

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Lai L (2007) Prediction of potential drug targets based on simple sequence properties. BMC Bioinform 8:353

    Article  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    Article  PubMed  CAS  Google Scholar 

  • Overington JP, Al-Lazikani B, Hopkins A (2006) How many drug targets are there? Nat Rev 5:993–996

    Article  CAS  Google Scholar 

  • Perumal D, Lim CS, Sakharkar KR, Sakharkar MK (2007) Differential genome analyses of metabolic enzymes in Pseudomonas aeruginosa for drug target identification. In Silico Biol 7:0032

    Google Scholar 

  • Roemer T, Jiang B, Davison J, Ketela T, Veillette K, Breton A, Tandia F, Linteau A, Sillaots S, Marta C, Martel N, Veronneau S, Lemieux S, Kauffman S, Becker J, Srorms R, Boone C, Bussey H (2003) Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol Microbiol 50:167–181

    Article  PubMed  CAS  Google Scholar 

  • Sakharkar KR, Sakharkar MK, Chow VTK (2004) A novel genomics approach for the identification of drug targets in pathogens, with special reference to Pseudomonas aeruginosa. In Silico Biol 4:0028

    Google Scholar 

  • Sakharkar KR, Sakharkar MK, Chow VT (2008) Biocomputational strategies for microbial drug target identification. Meth Mol Med 142:1–9

    Article  CAS  Google Scholar 

  • Sharma V, Gupta P, Dixit A (2008) In silico identification of putative drug targets from different metabolic pathways of Aeromonas hydrophila. In Silico Biol 8:0026

    Google Scholar 

  • Sridhar P, Song B, Kahveci T, Ranka S (2007) Mining metabolic networks for optimal drug targets. Pac Symp Biocomput 13:291–302

    Google Scholar 

  • Sur D, Sarkar BL, Manna B, Deen J, Datta S, Nivoqi SK, Gosh AN, Deb A, Kanunqo S, Palit A, Bhattacharya SK (2006) Epidemiological, microbiological & electron microscopic study of a cholera outbreak in a Kolkata slum community. Indian J Med Res 123:31–36

    PubMed  Google Scholar 

  • Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES, Golub TR (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci USA 96:2907–2912

    Article  PubMed  CAS  Google Scholar 

  • Ulm R, Baumann A, Oravecz A, Mate Z, Adam E, Oakeley EJ, Schafer E, Naqv F (2004) Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis. Proc Natl Acad Sci USA 101:1397–1402

    Article  PubMed  CAS  Google Scholar 

  • Van-Noort V, Snel B, Huynen MA (2003) Predicting gene function by conserved co-expression. Trends Genet 19:238–242

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Chen LH, Sun L, Yu J, Jin Q (2008) VFDB 2008 release: an enhanced web-based resource for comparative pathogenomics. Nucleic Acids Res 36:D539–D542

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Lin Y (2009) DEG 50, a database of essential genes in both prokaryotes and eukaryotes. Nucleic Acids Res 37:D455–D458

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Miller MB, Vance RE, Dziejman M, Bassler BL, Mekalanos JJ (2002) Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci USA 99:3129–3134

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the DBT center for bioinformatics facility at Department of Bioscience and Biotechnology, Banasthali University, Banasthali, India for providing essential facilities for completion of this research work. The authors also wish to thank Mr. Manish Roorkiwal, Guru Gobind Singh Indraprastha University, Delhi for critically reviewing the manuscript.

Disclosure statement

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Katara.

Additional information

Handling Editor: Reimer Stick

Pramod Katara and Atul Grover contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katara, P., Grover, A., Kuntal, H. et al. In silico prediction of drug targets in Vibrio cholerae . Protoplasma 248, 799–804 (2011). https://doi.org/10.1007/s00709-010-0255-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-010-0255-0

Keywords

Navigation